Advertisement

Probability Theory and Related Fields

, Volume 171, Issue 1–2, pp 53–95 | Cite as

On the energy landscape of the mixed even p-spin model

  • Wei-Kuo ChenEmail author
  • Madeline Handschy
  • Gilad Lerman
Article

Abstract

We investigate the energy landscape of the mixed even p-spin model with Ising spin configurations. We show that for any given energy level between zero and the maximal energy, with overwhelming probability there exist exponentially many distinct spin configurations such that their energies stay near this energy level. Furthermore, their magnetizations and overlaps are concentrated around some fixed constants. In particular, at the level of maximal energy, we prove that the Hamiltonian exhibits exponentially many orthogonal peaks. This improves the results of Chatterjee (Disorder chaos and multiple valleys in spin glasses, 2009) and Ding et al. (Ann Probab 43(6):3468–3493, 2015), where the former established a logarithmic size of the number of the orthogonal peaks, while the latter proved a polynomial size. Our second main result obtains disorder chaos at zero temperature and at any external field. As a byproduct, this implies that the fluctuation of the maximal energy is superconcentrated when the external field vanishes and obeys a Gaussian limit law when the external field is present.

Keywords

Disorder chaos Energy landscape Multiple peaks Parisi formula Sherrington–Kirkpatrick model 

Mathematics Subject Classification

60K35 60G15 82B44 

Notes

Acknowledgements

The authors are indebted to N. Krylov and M. Safonov for illuminating discussions on the regularity properties of the Parisi PDE. They thank S. Chatterjee, D. Panchenko, and the anonymous referees for a number of suggestions regarding the presentation of the paper. The research of W.-K. C. is partially supported by NSF Grant DMS-16-42207 and Hong Kong Research Grants Council GRF-14-302515. The research of M. H. and G. L. is partially supported by NSF Grant DMS-14-18386.

References

  1. 1.
    Amit, D.J., Gutfreund, H., Sompolinsky, H.: Spin-glass models of neural networks. Phys. Rev. A 32, 1007–1018 (1985)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Auffinger, A., Ben Arous, G.: Complexity of random smooth functions on the high-dimensional sphere. Ann. Probab. 41(6), 4214–4247 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Auffinger, A., Ben Arous, G., Černý, J.: Random matrices and complexity of spin glasses. Commun. Pure Appl. Math. 66(2), 165–201 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Auffinger, A., Chen, W.-K.: The Parisi formula has a unique minimizer. Commun. Math. Phys. 335(3), 1429–1444 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Auffinger, A., Chen, W.-K.: Parisi formula for the ground state energy in the mixed p-spin model. ArXiv e-prints, June (2016)Google Scholar
  6. 6.
    Auffinger, A., Chen, W.-K.: The Legendre structure of the Parisi formula. Commun. Math. Phys. 348(3), 751–770 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Ben Arous, G., Gayrard, V., Kuptsov, A.: A new REM conjecture. In: In and out of equilibrium. 2, volume 60 of Progr. Probab., pp. 59–96. Birkhäuser, Basel (2008)Google Scholar
  8. 8.
    Bhamidi, S., Dey, P.S., Nobel, A.B.: Energy Landscape for large average submatrix detection problems in Gaussian random matrices. ArXiv e-prints, November (2012)Google Scholar
  9. 9.
    Boucheron, S., Lugosi, G., Massart, P.: Concentration inequalities. Oxford University Press, Oxford. A nonasymptotic theory of independence, With a foreword by Michel Ledoux (2013)Google Scholar
  10. 10.
    Bovier, A., Klimovsky, A.: Fluctuations of the partition function in the generalized random energy model with external field. J. Math. Phys. 49(12), 125202, 27 (2008)Google Scholar
  11. 11.
    Bovier, A., Kurkova, I.: Derrida’s generalised random energy models. I. Models with finitely many hierarchies. Ann. Inst. H. Poincaré Probab. Stat. 40(4), 439–480 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Bovier, A., Kurkova, I.: Derrida’s generalized random energy models. II. Models with continuous hierarchies. Ann. Inst. H. Poincaré Probab. Stat. 40(4), 481–495 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Bovier, A., Kurkova, I.: Energy statistics in disordered systems: the local REM conjecture and beyond. Acta Phys. Pol. B 36(9), 2621–2634 (2005)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Bovier, A., Kurkova, I.: Local energy statistics in disordered systems: a proof of the local REM conjecture. Commun. Math. Phys. 263(2), 513–533 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Bovier, A., Kurkova, I.: A tomography of the GREM: beyond the REM conjecture. Commun. Math. Phys. 263(2), 535–552 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Bovier, A., Kurkova, I.: Local energy statistics in spin glasses. J. Stat. Phys. 126(4–5), 933–949 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Bruckner, A.: Differentiation of real functions, volume 5 of CRM Monograph Series, 2nd edn. American Mathematical Society, Providence, RI (1994)Google Scholar
  18. 18.
    Charbonneau, P., Kurchan, J., Parisi, G., Urbani, P., Zamponi, F.: Fractal free energy landscapes in structural glasses. Nature Commun. 5 (2014). doi: 10.1038/ncomms4725
  19. 19.
    Chatterjee, S.: Chaos, concentration, and multiple valleys. ArXiv e-prints, October (2008)Google Scholar
  20. 20.
    Chatterjee, S.: Disorder chaos and multiple valleys in spin glasses. ArXiv e-prints, July (2009)Google Scholar
  21. 21.
    Chatterjee, S.: Superconcentration and related topics. Springer Monographs in Mathematics. Springer, Cham (2014)CrossRefGoogle Scholar
  22. 22.
    Chen, W.-K.: Disorder chaos in the Sherrington–Kirkpatrick model with external field. Ann. Probab. 41(5), 3345–3391 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Chen, W.-K.: Chaos in the mixed even-spin models. Commun. Math. Phys. 328(3), 867–901 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Chen, W.-K.: Variational representations for the Parisi functional and the two-dimensional Guerra–Talagrand bound. ArXiv e-prints, January (2015)Google Scholar
  25. 25.
    Chen, W.-K., Hsieh, H.-W., Hwang, C.-R., Sheu, Y.-C.: Disorder chaos in the spherical mean-field model. J. Stat. Phys. 160(2), 417–429 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Chen, W.-K., Sen, A.: Parisi formula, disorder chaos and fluctuation for the ground state energy in the spherical mixed \(p\)-spin models. ArXiv e-prints, December (2015)Google Scholar
  27. 27.
    Choromanska, A., Henaff, M., Mathieu, M., Ben Arous, G., LeCun, Y.: The loss surfaces of multilayer networks. In: Lebanon, G., Vishwanathan, S.V.N. (eds.) Proceedings of the eighteenth international conference on artificial intelligence and statistics, AISTATS 2015, San Diego, California, USA, May 9–12, 2015, volume 38 of JMLR workshop and conference proceedings. JMLR.org (2015)Google Scholar
  28. 28.
    Dembo, A., Montanari, A., Sen, S.: Extremal cuts of sparse random graphs. ArXiv e-prints, March (2015)Google Scholar
  29. 29.
    Ding, J., Eldan, R., Zhai, A.: On multiple peaks and moderate deviations for the supremum of a Gaussian field. Ann. Probab. 43(6), 3468–3493 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Fyodorov, Y.V.: Complexity of random energy landscapes, glass transition, and absolute value of the spectral determinant of random matrices. Phys. Rev. Lett. 92(24):240601, 4, (2004)Google Scholar
  31. 31.
    Fyodorov, Y.V., Williams, I.: Replica symmetry breaking condition exposed by random matrix calculation of landscape complexity. J. Stat. Phys. 129(5–6), 1081–1116 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Gamarnik, D., Li, Q.: Finding a Large Submatrix of a Gaussian Random Matrix. ArXiv e-prints, February (2016)Google Scholar
  33. 33.
    Jagannath, A., Tobasco, I.: A dynamic programming approach to the Parisi functional. Proc. Am. Math. Soc. 144(7), 3135–3150 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Jagannath, A., Tobasco, I.: Low temperature asymptotics of spherical mean field spin glasses. ArXiv e-prints, February (2016)Google Scholar
  35. 35.
    Karatzas, I., Shreve, S.E.: Brownian motion and stochastic calculus, volume 113 of graduate texts in mathematics, 2nd edn. Springer, New York (1991)Google Scholar
  36. 36.
    Kurchan, J., Parisi, G., Virasoro, M.A.: Barriers and metastable states as saddle points in the replica approach. J. Phys. I 3(8), 1819–1838 (1993)Google Scholar
  37. 37.
    Lee, Y.C., Doolen, G., Chen, H.H., Sun, G.Z., Maxwell, T., Lee, H.Y., Giles, C.L.: Machine learning using a higher order correlation network. Phys. D Nonlinear Phenom. 22(1), 276–306 (1986)MathSciNetCrossRefGoogle Scholar
  38. 38.
    Mézard, M., Montanari, A.: Information, physics, and computation. Oxford graduate texts. Oxford University Press, Oxford (2009). Autre tirage: 2010, 2012Google Scholar
  39. 39.
    Mézard, M., Parisi, G., Virasoro, M.A.: Spin glass theory and beyond, volume of 9 World Scientific Lecture Notes in Physics. World Scientific Publishing Co., Inc., Teaneck (1987)Google Scholar
  40. 40.
    Panchenko, D.: On differentiability of the Parisi formula. Electron. Commun. Probab. 13, 241–247 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  41. 41.
    Panchenko, D.: The Sherrington–Kirkpatrick Model. Springer Monographs in Mathematics. Springer, New York (2013)zbMATHGoogle Scholar
  42. 42.
    Panchenko, D.: The Parisi formula for mixed \(p\)-spin models. Ann. Probab. 42(3), 946–958 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  43. 43.
    Peretto, P., Niez, J.J.: Long term memory storage capacity of multiconnected neural networks. Biol. Cybern. 54(1), 53–63 (1986)CrossRefzbMATHGoogle Scholar
  44. 44.
    Rizzo, T.: Chaos in mean-field spin-glass models. In: Spin glasses: statics and dynamics, volume 62 of Progr. Probab. pp. 143–157. Birkhäuser Verlag, Basel (2009)Google Scholar
  45. 45.
    Subag, E.: The complexity of spherical \(p\)-spin models—a second moment approach. ArXiv e-prints, April (2015)Google Scholar
  46. 46.
    Subag, E.: The geometry of the Gibbs measure of pure spherical spin glasses. ArXiv e-prints, April (2016)Google Scholar
  47. 47.
    Subag, E., Zeitouni, O.: The extremal process of critical points of the pure \(p\)-spin spherical spin glass model. ArXiv e-prints, September (2015)Google Scholar
  48. 48.
    Talagrand, M.: The Parisi formula. Ann. Math. (2) 163(1), 221–263 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  49. 49.
    Tyrrell Rockafellar, R.: Convex analysis. Princeton Landmarks in Mathematics. Princeton University Press, Princeton, NJ. Reprint of the 1970 original, Princeton Paperbacks (1997)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.School of MathematicsUniversity of MinnesotaMinneapolisUSA

Personalised recommendations