Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Lipschitz minorants of Brownian motion and Lévy processes

  • 228 Accesses

  • 2 Citations


For \(\alpha > 0\), the \(\alpha \)-Lipschitz minorant of a function\(f\!:\!\mathbb{R }\rightarrow \mathbb{R }\) is the greatest function \(m : \mathbb{R }\rightarrow \mathbb{R }\) such that \(m \le f\) and \(|m(s)-m(t)| \le \alpha |s-t|\) for all \(s,t \in \mathbb{R }\), should such a function exist. If \(X=(X_t)_{t \in \mathbb{R }}\) is a real-valued Lévy process that is not pure linear drift with slope \(\pm \alpha \), then the sample paths of \(X\) have an \(\alpha \)-Lipschitz minorant almost surely if and only if \(| \mathbb{E }[X_1] | < \alpha \). Denoting the minorant by \(M\), we investigate properties of the random closed set \(\fancyscript{Z} := \{ t \in \mathbb{R }: M_t = X_t \wedge X_{t-} \}\), which, since it is regenerative and stationary, has the distribution of the closed range of some subordinator “made stationary” in a suitable sense. We give conditions for the contact set \(\fancyscript{Z}\) to be countable or to have zero Lebesgue measure, and we obtain formulas that characterize the Lévy measure of the associated subordinator. We study the limit of \(\fancyscript{Z}\) as \(\alpha \rightarrow \infty \) and find for the so-called abrupt Lévy processes introduced by Vigon that this limit is the set of local infima of \(X\). When \(X\) is a Brownian motion with drift \(\beta \) such that \(|\beta | < \alpha \), we calculate explicitly the densities of various random variables related to the minorant.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3


  1. 1.

    Abramson, J., Pitman, J., Ross, N.: Convex minorants of random walks and Lévy processes. Electr. Commun. Probab. 16, 423–434 (2011)

  2. 2.

    Balder, E.J.: An extension of duality-stability relations to nonconvex optimization problems. SIAM J. Control Optim. 15(2), 329–343 (1977)

  3. 3.

    Bass, R.F.: Markov processes and convex minorants. In: Seminar on probability, XVIII, vol. 1059, lecture notes in Mathematics, pp. 29–41, Springer, Berlin (1984)

  4. 4.

    Bertoin, J.: Lévy processes, volume 121 of Cambridge tracts in mathematics. Cambridge University Press, Cambridge (1996)

  5. 5.

    Bertoin, J.: Regenerative embedding of Markov sets. Probab. Theory Relat. Fields 108(4), 559–571 (1997)

  6. 6.

    Bertoin, J.: Regularity of the half-line for Lévy processes. Bull. Sci. Math. 121(5), 345–354 (1997)

  7. 7.

    Bertoin, J.: The convex minorant of the Cauchy process. Electr. Comm. Probab. 5, 51–55 (2000). (electronic)

  8. 8.

    Borodin, A.N., Salminen, P.: Handbook of Brownian motion—facts and formulae. Probability and its applications, 2nd edn. Birkhäuser, Basel (2002)

  9. 9.

    Carolan, C., Dykstra, R.: Marginal densities of the least concave majorant of Brownian motion. Ann. Stat. 29(6), 1732–1750 (2001)

  10. 10.

    Chaumont, L.: On the law of the supremum of Lévy processes. Ann. Probab (to appear) (2011)

  11. 11.

    Çinlar, E.: Sunset over Brownistan. Stoch. Process. Appl. 40(1), 45–53 (1992)

  12. 12.

    Dietrich, H.: Zur \(c\)-Konvexität und \(c\)-Subdifferenzierbarkeit von Funktionalen. Optimization 19(3), 355–371 (1988)

  13. 13.

    Doney, R.A.: Fluctuation theory for Lévy processes. Lecture notes in mathematics, vol. 1897, Springer, Berlin. In: Picard, J. (ed.) Lectures from the 35th summer school on probability theory, Saint-Flour, 6–23 July 2005, (foreword by Picard, J.) (2007)

  14. 14.

    Elster, K.H., Nehse, R.: Zur Theorie der Polarfunktionale. Math. Operationsforsch. Stat. 5(1), 3–21 (1974)

  15. 15.

    Faggionato, A.: The alternating marked point process of \(h\)-slopes of drifted Brownian motion. Stoch. Process. Appl. 119(6), 1765–1791 (2009)

  16. 16.

    Fitzsimmons, P.J., Taksar, M.: Stationary regenerative sets and subordinators. Ann. Probab. 16(3), 1299–1305 (1988)

  17. 17.

    Fourati, S.: Points de croissance des processus de Lévy et théorie générale des processus. Probab. Theory Relat. Fields 110(1), 13–49 (1998)

  18. 18.

    Getoor, R.K., Sharpe, M.J.: Last exit decompositions and distributions. Indiana Univ. Math. J. 23, 377–404 (1973/74)

  19. 19.

    Groeneboom, P.: The concave majorant of Brownian motion. Ann. Probab. 11(4), 1016–1027 (1983)

  20. 20.

    Hansen, P., Jaumard, B., Lu, S.H.: Global optimization of univariate Lipschitz functions. I. Survey and properties. Math. Program. 55(3, Ser. A), 251–272 (1992)

  21. 21.

    Hansen, P., Jaumard, B., Lu, S.H.: Global optimization of univariate Lipschitz functions. II. New algorithms and computational comparison. Math. Program. 55(3, Ser. A), 273–292 (1992)

  22. 22.

    Hiriart-Urruty, J.-B.: Extension of Lipschitz functions. J. Math. Anal. Appl. 77(2), 539–554 (1980)

  23. 23.

    Hiriart-Urruty, J.-B.: Lipschitz \(r\)-continuity of the approximate subdifferential of a convex function. Math. Scand. 47(1), 123–134 (1980)

  24. 24.

    Horst, R., Tuy, H.: Global optimization: deterministic approaches, 2nd edn. Springer, Berlin (1993)

  25. 25.

    Kallenberg, O.: Foundations of modern probability. Probability and its applications, 2nd edn. Springer, New York (2002)

  26. 26.

    Levin, V.L.: Abstract convexity in measure theory and in convex analysis. J. Math. Sci. (N. Y.) 116(4), 3432–3467 (2003). (optimization and related topics, 4)

  27. 27.

    Lucet, Y.: What shape is your conjugate? A survey of computational convex analysis and its applications. SIAM J. Optim. 20(1), 216–250 (2009)

  28. 28.

    Maisonneuve, B.: Ensembles régénératifs, temps locaux et subordinateurs. In: Séminaire de Probabilités, V (University of Strasbourg, année universitaire 1969–1970), Lecture notes in mathematics, vol. 191, pp. 147–169, Springer, Berlin (1971)

  29. 29.

    Maisonneuve, B.: Ensembles régénératifs de la droite. Z. Wahrsch. Verw. Gebiete 63(4), 501–510 (1983)

  30. 30.

    Millar, P.W.: Exit properties of stochastic processes with stationary independent increments. Trans. Am. Math. Soc. 178, 459–479 (1973)

  31. 31.

    Millar, P.W.: Zero-one laws and the minimum of a Markov process. Trans. Am. Math. Soc. 226, 365–391 (1977)

  32. 32.

    Millar, P.W.: A path decomposition for Markov processes. Ann. Probab. 6(2), 345–348 (1978)

  33. 33.

    Millar, P.W.: Random times and decomposition theorems. In: Proceedings of the symposium on probability—pure mathematics, vol. XXXI, University of Illinois, Urbana, Ill, 1976, pp. 91–103, American Mathematics Soceity, Providence (1977)

  34. 34.

    Neveu, J., Pitman, J.: Renewal property of the extrema and tree property of the excursion of a one-dimensional Brownian motion. In: Séminaire de Probabilités, XXIII, vol. 1372 of lecture notes in mathematics, pp. 239–247, Springer, Berlin (1989)

  35. 35.

    Neveu, J., Pitman, J.W.: The branching process in a Brownian excursion. In: Séminaire de Probabilités, XXIII, vol. 1372 of lecture notes in mathematics, pp. 248–257, Springer, Berlin (1989)

  36. 36.

    Norkin, V.I., Onishchenko, B.O.: Minorant methods of stochastic global optimization. Kibernet. Sistem. Anal. 41(2), 56–70 (2005)

  37. 37.

    Pecherskii, E.A., Rogozin, B.A.: On joint distributions of random variables associated with fluctuations of a process with independent increments. Theory Probab. Appl. 14(3), 410–423 (1969)

  38. 38.

    Pitman, J., Uribe Bravo, G.: The convex minorant of a Lévy process. Ann. Probab. (to appear) (2011)

  39. 39.

    Pitman, J.W.: Remarks on the convex minorant of Brownian motion. In: Seminar on stochastic processes, 1982 (Evanston, Ill, 1982), vol. 5 of progress in probability and statistics, pp. 219–227, Birkhäuser, Boston (1983)

  40. 40.

    Pittenger, A.O., Shih, C.T.: Coterminal families and the strong Markov property. Bull. Amer. Math. Soc. 78, 439–443 (1972)

  41. 41.

    Rachev, S.T., Ludger, R.: Mass transportation problems (probability and its applications (New York)): theory, vol. 1. Springer, New York (1998)

  42. 42.

    Rockafellar, R.T., Wets, R.J.B.: Variational analysis, volume 317 of Grundlehren der Mathematischen Wissenschaften (fundamental principles of mathematical sciences). Springer, Berlin (1998)

  43. 43.

    Rogers, L.C.G., Williams, D.: Diffusions, Markov processes, and martingales: Itô calculus. Volume 2, Wiley series in probability and mathematical statistics: probability and mathematical statistics. Wiley, New York (1987)

  44. 44.

    Rogozin, B.A.: The local behavior of processes with independent increments. Teor. Verojatnost. i Primenen. 13, 507–512 (1968)

  45. 45.

    Štatland, E.S.: On local properties of processes with independent increments. Teor. Verojatnost. i Primenen. 10, 344–350 (1965)

  46. 46.

    Suidan, T.M.: Convex minorants of random walks and Brownian motion. Teor. Veroyatnost. i Primenen. 46(3), 498–512 (2001)

  47. 47.

    Vigon, V.: Dérivées de dini des processus de lévy. http://www-irma.u-strasbg.fr/~vigon/boulot/pas_publication/fichiers/conjecture.pdf

  48. 48.

    Vigon, Vincent: Votre Lévy rampe-t-il? J. Lond. Math. Soc. (2) 65(1), 243–256 (2002)

  49. 49.

    Vincent, Vigon: Abrupt Lévy processes. Stoch. Process. Appl. 103(1), 155–168 (2003)

  50. 50.

    Villani C.: Optimal transport—old and new: vol. 338 of Grundlehren der Mathematischen Wissenschaften (fundamental principles of mathematical sciences). Springer, Berlin (2009)

Download references


We thank an anonymous referee for a number of helpful suggestions. S. N. Evans was supported in part by National Science Foundation Grant DMS-0907630.

Author information

Correspondence to Joshua Abramson.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Abramson, J., Evans, S.N. Lipschitz minorants of Brownian motion and Lévy processes. Probab. Theory Relat. Fields 158, 809–857 (2014). https://doi.org/10.1007/s00440-013-0497-9

Download citation


  • Fluctuation theory
  • Regenerative set
  • Subordinator
  • Abrupt process
  • Global minimum
  • \(c\)-Convexity
  • Pasch-Hausdorff envelope

Mathematics Subject Classification (2000)

  • 60G51
  • 60G55
  • 60G17
  • 60J65