Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

Discrete fractal dimensions of the ranges of random walks in \({{\mathbb Z}^d}\) associate with random conductances

  • 233 Accesses

  • 1 Citations


Let \({X= \{X_t, t \ge 0\}}\) be a continuous time random walk in an environment of i.i.d. random conductances \({\{\mu_e \in [1,\infty), e \in E_d\}}\) , where E d is the set of nonoriented nearest neighbor bonds on the Euclidean lattice \({\mathbb{Z}^d}\) and d ≥ 3. Let \({{\rm R} = \{x \in \mathbb{Z}^d: X_t = x {\rm \,for\, some}\,t \ge 0\}}\) be the range of X. It is proved that, for almost every realization of the environment, dimH R = dimP R = 2 almost surely, where dimH and dimP denote, respectively, the discrete Hausdorff and packing dimension. Furthermore, given any set \({A \subseteq \mathbb{Z}^d}\) , a criterion for A to be hit by X t for arbitrarily large t > 0 is given in terms of dimH A. Similar results for Bouchoud’s trap model in \({\mathbb{Z}^d}\) (d ≥ 3) are also proven.

This is a preview of subscription content, log in to check access.


  1. 1

    Andres, S., Barlow, M.T., Deuschel, J.-D., Hambly, B.: Invariance principle for the random conductance model. Preprint (2010)

  2. 2

    Barlow M.T.: Random walks on supercritical percolation clusters. Ann. Probab. 32, 3024–3084 (2004)

  3. 3

    Barlow T., C˘erný J.: Convergence to fractional kinetics for random walks associated with unbounded conductances. Probab. Theory Relat. Fields 149, 639–673 (2011)

  4. 4

    Barlow M.T., Deuschel J.-D.: Invariance principle for the random conductance model with unbounded conductance. Ann. Probab. 38, 234–276 (2010)

  5. 5

    Barlow M.T., Taylor S.J.: Fractal dimension of sets in discrete spaces. J. Phys. A 22, 2621–2626 (1989)

  6. 6

    Barlow M.T., Taylor S.J.: Defining fractal subsets of \({{\mathbb Z}^d}\) . Proc. Lond. Math. Soc. 64, 125–152 (1992)

  7. 7

    Barlow M.T., Zheng X.: The random conductance model with Cauchy tails. Ann. Appl. Probab. 20, 869–889 (2010)

  8. 8

    Ben Arous G., C˘erný J.: Scaling limit for trap models on \({{\mathbb Z}^d}\) . Ann. Probab. 35, 2356–2384 (2007)

  9. 9

    Berger N., Biskup M., Hoffman C.E., Kozma G.: Anomalous heat-kernel decay for random walk among bounded random conductances. Ann. Inst. H. Poincaré Probab. Stat. 44, 374–392 (2008)

  10. 10

    Biskup M., Prescott T.M.: Functional CLT for random walk among bounded random conductances. Electron. J. Probab. 12, 1323–1348 (2007)

  11. 11

    C˘erný J.: On two-dimensional random walk among heavy-tailed conductances. Electron. J. Probab. 16, 293–313 (2011)

  12. 12

    Chung K.L.: Probabilistic approach in potential theroy to the equilibrium. Ann. Inst. Fourier Grenoble 23, 313–322 (1973)

  13. 13

    Chung K.L.: Remarks on equilibrium potential and energy. Ann. Inst. Fourier Grenoble 25, 131–138 (1975)

  14. 14

    Delmotte T.: Parabolic Harnack inequality and estimates of Markov chains on graphs. Rev. Mat. Iberoamericana 15, 181–232 (1999)

  15. 15

    Falconer K.J.: Fractal Geometry—Mathematical Foundations and Applications. Wiley, New York (1990)

  16. 16

    Gikhman I.I., Skorohod A.V.: The Theory of Stochastic Processes, vol. 1. Springer, Berlin (1974)

  17. 17

    Kahane J.-P.: Some Random Series of Functions. Cambridge University Press, Cambridge (1985)

  18. 19

    Khoshnevisan D.: A discrete fractal in \({{\mathbb Z}^1_+}\) . Proc. Am. Math. Soc. 136, 577–584 (1994)

  19. 20

    Khoshnevisan D.: Escape rates for Lévy processes. Stud. Sci. Math. Hung. 33, 177–183 (1997)

  20. 21

    Lawler G.F., Limic V.: Random Walk: A Modern Introduction. Cambridge University Press, Cambridge (2010)

  21. 22

    Lamperti J.: Wiener’s test and Markov chains. J. Math. Anal. Appl. 6, 58–66 (1963)

  22. 23

    Mathieu P.: Quenched invariance principles for random walks with random conductances. J. Stat. Phys. 130, 1025–1046 (2008)

  23. 24

    Norris J.R.: Markov Chains. Cambridge University Press, Cambridge (1998)

  24. 25

    Pruitt W.E., Taylor S.J.: Sample path properties of processes with stable components. Z. Wahrsch. Verw. Gebiete 12, 267–289 (1969)

  25. 26

    Revuz D.: Markov Chains. Elsevier Science Publishers B.V., Amsterdam (1984)

  26. 27

    Solomon F.: Random walks in a random environment. Ann. Probab. 3, 1–31 (1975)

  27. 28

    Syski R.: Passage Times for Markov Chains. IOS Press, Amsterdam (1992)

  28. 29

    Taylor S.J.: The measure theory of random fractals. Math. Proc. Camb. Phil. Soc. 100, 383–406 (1986)

  29. 30

    Xiao Y.: Asymptotic results for self-similar Markov processes. In: Szyszkowicz, B. (eds) Asymptotic Methods in Probability and Statistics (ICAMPS’97), pp. 323–340. Elsevier Science, Amsterdam (1998)

  30. 31

    Xiao Y.: Random fractals and Markov processes. In: Lapidus, M.L., Frankenhuijsen, M. (eds) Fractal Geometry and Applications: A Jubilee of Benoit Mandelbrot, pp. 261–338. American Mathematical Society, Providence (2004)

  31. 32

    Xiao Y.: Sample path properties of anisotropic Gaussian random fields. In: Khoshnevisan, D., Rassoul-Agha, F. (eds.) A Minicourse on Stochastic Partial Differential Equations. Lecture Notes in Mathematics, vol. 1962, pp. 145–212. Springer, New York (2009)

Download references

Author information

Correspondence to Xinghua Zheng.

Additional information

Y. Xiao was partially supported by NSF grant DMS-1006903; X. Zheng was partially supported by GRF 606010 of the HKSAR.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Xiao, Y., Zheng, X. Discrete fractal dimensions of the ranges of random walks in \({{\mathbb Z}^d}\) associate with random conductances . Probab. Theory Relat. Fields 156, 1–26 (2013). https://doi.org/10.1007/s00440-012-0418-3

Download citation


  • Random conductance model
  • Bouchoud’s trap model
  • Range
  • Discrete Hausdorff dimension
  • Discrete packing dimension
  • Transience

Mathematics Subject Classification

  • 60K37
  • 60F17
  • 82C41
  • 31C20