Advertisement

Probability Theory and Related Fields

, Volume 149, Issue 3–4, pp 397–415 | Cite as

Random graph asymptotics on high-dimensional tori II: volume, diameter and mixing time

  • Markus Heydenreich
  • Remco van der HofstadEmail author
Open Access
Article

Abstract

For critical bond-percolation on high-dimensional torus, this paper proves sharp lower bounds on the size of the largest cluster, removing a logarithmic correction in the lower bound in Heydenreich and van der Hofstad (Comm Math Phys 270(2):335–358, 2007). This improvement finally settles a conjecture by Aizenman (Nuclear Phys B 485(3):551–582, 1997) about the role of boundary conditions in critical high-dimensional percolation, and it is a key step in deriving further properties of critical percolation on the torus. Indeed, a criterion of Nachmias and Peres (Ann Probab 36(4):1267–1286, 2008) implies appropriate bounds on diameter and mixing time of the largest clusters. We further prove that the volume bounds apply also to any finite number of the largest clusters. Finally, we show that any weak limit of the largest connected component is non-degenerate, which can be viewed as a significant sign of critical behavior. The main conclusion of the paper is that the behavior of critical percolation on the high-dimensional torus is the same as for critical Erdős-Rényi random graphs.

Keywords

Percolation Random graph asymptotics Mean-field behavior Critical window 

Mathematics Subject Classification (2000)

60K35 82B43 

Notes

Acknowledgements

The work of RvdH was supported in part by the Netherlands Organisation for Scientific Research (NWO). We thank Asaf Nachmias for enlightening discussions concerning the results and methodology in [16,19]. MH is grateful to Institut Mittag-Leffler for the kind hospitality during his stay in February 2009, and in particular to Jeff Steif for inspiring discussions.

Open Access

This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. 1.
    Aizenman M.: On the number of incipient spanning clusters. Nuclear. Phys. B 485(3), 551–582 (1997)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Aizenman M., Barsky D.J.: Sharpness of the phase transition in percolation models. Comm. Math. Phys. 108(3), 489–526 (1987)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Aizenman M., Newman C.M.: Tree graph inequalities and critical behavior in percolation models. J. Stat. Phys. 36(1–2), 107–143 (1984)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Aldous D.: Brownian excursions, critical random graphs and the multiplicative coalescent. Ann. Probab. 25(2), 812–854 (1997)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Barsky D.J., Aizenman M.: Percolation critical exponents under the triangle condition. Ann. Probab. 19(4), 1520–1536 (1991)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Borgs C., Chayes J.T., van der Hofstad R., Slade G., Spencer J.: Random subgraphs of finite graphs. I. The scaling window under the triangle condition. Random Struct. Algorithms 27(2), 137–184 (2005)zbMATHCrossRefGoogle Scholar
  7. 7.
    Borgs C., Chayes J.T., van der Hofstad R., Slade G., Spencer J.: Random subgraphs of finite graphs. II. The lace expansion and the triangle condition. Ann. Probab. 33(5), 1886–1944 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Grimmett G.: Percolation, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 321, 2nd edn. Springer, Berlin (1999)Google Scholar
  9. 9.
    Hara T.: Mean-field critical behaviour for correlation length for percolation in high dimensions. Probab. Theory Relat. Fields 86(3), 337–385 (1990)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Hara T.: Decay of correlations in nearest-neighbour self-avoiding walk, percolation, lattice trees and animals. Ann. Probab. 36(2), 530–593 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Hara T., van der Hofstad R., Slade G.: Critical two-point functions and the lace expansion for spread-out high-dimensional percolation and related models. Ann. Probab. 31(1), 349–408 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Hara T., Slade G.: Mean-field critical behaviour for percolation in high dimensions. Comm. Math. Phys. 128(2), 333–391 (1990)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Hara T., Slade G.: The scaling limit of the incipient infinite cluster in high-dimensional percolation. I. Critical exponents. J. Stat. Phys. 99(5–6), 1075–1168 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Hara T., Slade G.: The scaling limit of the incipient infinite cluster in high-dimensional percolation. II. Integrated super-Brownian excursion. J. Math. Phys. 41(3), 1244–1293 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Heydenreich M., van der Hofstad R.: Random graph asymptotics on high-dimensional tori. Comm. Math. Phys. 270(2), 335–358 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Kozma G., Nachmias A.: The Alexander-Orbach conjecture holds in high dimensions. Invent. Math. 178(3), 635–654 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Menshikov M.V.: Coincidence of critical points in percolation problems. Dokl. Akad. Nauk SSSR 288(6), 1308–1311 (1986)MathSciNetGoogle Scholar
  18. 18.
    Nachmias, A., Peres, Y.: Critical percolation on random regular graphs. Preprint arXiv:0707.2839v2 [math.PR], 2007. To appear in Random Structures and AlgorithmsGoogle Scholar
  19. 19.
    Nachmias A., Peres Y.: Critical random graphs: diameter and mixing time. Ann. Probab. 36(4), 1267–1286 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    Slade, G.: The lace expansion and its applications. Lecture Notes in Mathematics, vol. 1879, xiv+232 pp. Springer, Berlin (2006)Google Scholar

Copyright information

© The Author(s) 2009

Open AccessThis is an open access article distributed under the terms of the Creative Commons Attribution Noncommercial License (https://creativecommons.org/licenses/by-nc/2.0), which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Authors and Affiliations

  1. 1.Department of MathematicsVrije Universiteit AmsterdamAmsterdamThe Netherlands
  2. 2.Department of Mathematics and Computer ScienceEindhoven University of TechnologyEindhovenThe Netherlands

Personalised recommendations