Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

The critical Z-invariant Ising model via dimers: the periodic case

  • 108 Accesses

  • 31 Citations


We study a large class of critical two-dimensional Ising models namely critical Z-invariant Ising models on periodic graphs, example of which are the classical \({\mathbb{Z}^2}\) , triangular and honeycomb lattice at the critical temperature. Fisher (J Math Phys 7:1776–1781, 1966) introduced a correspondence between the Ising model and the dimer model on a decorated graph, thus setting dimer techniques as a powerful tool for understanding the Ising model. In this paper, we give a full description of the dimer model corresponding to the critical Z-invariant Ising model. We prove that the dimer characteristic polynomial is equal (up to a constant) to the critical Laplacian characteristic polynomial, and defines a Harnack curve of genus 0. We prove an explicit expression for the free energy, and for the Gibbs measure obtained as weak limit of Boltzmann measures.

This is a preview of subscription content, log in to check access.


  1. 1

    Baxter R.J.: Free-fermion, checkerboard and Z-invariant lattice models in statistical mechanics. Proc. R. Soc. Lond. Ser. A 404(1826), 1–33 (1986)

  2. 2

    Baxter, R.J.: Exactly Solved Models in Statistical Mechanics. Academic Press Inc. (Harcourt Brace Jovanovich Publishers), London (1989) (Reprint of the 1982 original)

  3. 3

    Boutillier, C., de Tiliè re, B.: The critical Z-invariant ising model via dimers: locality properties. arXiv:0902.1882, February (2009)

  4. 4

    Biggs N.: Algebraic graph theory. Cambridge Mathematical Library, 2nd edn. University Press, Cambridge (1993)

  5. 5

    Bourbaki, N.: Éléments de mathématique. Algèbre. Chapitres 1 à 3. Hermann, Paris(1970)

  6. 6

    Cohn, H., Kenyon, R., Propp, J.: A variational principle for domino tilings. J. Am. Math. Soc. 14(2), 297–346 (2001) (electronic)

  7. 7

    Cimasoni D., Reshetikhin N.: Dimers on surface graphs and spin structures. I. Comm. Math. Phys. 275(1), 187–208 (2007)

  8. 8

    Costa-Santos R.: Geometrical aspects of the Z-invariant Ising model. Eur. Phys. J. B 53(1), 85–90 (2006)

  9. 9

    de Tilière B.: Quadri-tilings of the plane. Probab. Theory Related Fields 137(3–4), 487–518 (2007)

  10. 10

    Dolbilin, N.P., Zinov′ev, Yu.M., Mishchenko, A.S., Shtan′ko, M.A., Shtogrin, M.I.: Homological properties of two-dimensional coverings of lattices on surfaces. Funktsional. Anal. i Prilozhen. 30(3):19–33, 95, 1996

  11. 11

    Fisher M.E.: On the dimer solution of planar Ising models. J. Math. Phys. 7, 1776–1781 (1966)

  12. 12

    Ishikawa, M., Wakayama, M.: Minor summation formulas of Pfaffians, survey and a new identity. In: Combinatorial Methods in Representation Theory (Kyoto, 1998), vol 28 of Adv. Stud. Pure Math., Kinokuniya, Tokyo, pp 133–142 (2000)

  13. 13

    Kasteleyn P.W.: The statistics of dimers on a lattice : I. The number of dimer arrangements on a quadratic lattice. Physica 27, 1209–1225 (1961)

  14. 14

    Kasteleyn, P.W.: Graph theory and crystal physics. In: Graph Theory and Theoretical Physics, pp.43–110. Academic Press, London, 1967

  15. 15

    Kenyon R.: Local statistics of lattice dimers. Ann. Inst. H. Poincaré Probab. Stat. 33(5), 591–618 (1997)

  16. 16

    Kenyon R.: The Laplacian and Dirac operators on critical planar graphs. Invent. Math. 150(2), 409–439 (2002)

  17. 17

    Kirchhoff G.: Ueber die Auflösung der Gleichungen, auf welche man bei der Untersuchung der linearen Vertheilung galvanischer Ströme geführt wird. Annalen der Physik 148, 497–508 (1847)

  18. 18

    Kenyon R., Okounkov A.: Planar dimers and Harnack curves. Duke Math. J. 131(3), 499–524 (2006)

  19. 19

    Kenyon, R., Okounkov, A., Sheffield, S.: Dimers and amoebae. Ann. of Math. (2) 163(3):1019–1056, 2006

  20. 20

    Kenyon R., Schlenker J.-M.: Rhombic embeddings of planar quad-graphs. Trans. Amer. Math. Soc. 357(9), 3443–3458 (2005) (electronic)

  21. 21

    Kramers H.A., Wannier G.H.: Statistics of the two-dimensional ferromagnet. I. Phys. Rev. (2) 60, 252–262, 1941

  22. 22

    Mercat C.: Discrete Riemann surfaces and the Ising model. Comm. Math. Phys. 218(1), 177–216 (2001)

  23. 23

    McCoy B., Wu F.: The Two-dimensional Ising Model. Harvard University Press, Cambridge (1973)

  24. 24

    Ryshik I.M., Gradšteĭn I.S.: Summen-, Produkt- und Integral-tafeln. VEB Deutscher Verlag der Wissenschaften, Berlin (1957)

  25. 25

    Sheffield, S.: Random surfaces. Astérisque (304):vi+175, 2005

  26. 26

    Tesler G.: Matchings in graphs on non-orientable surfaces. J. Combin. Theory Ser. B 78(2), 198–231 (2000)

  27. 27

    Wannier G.H.: The statistical problem in cooperative phenomena. Rev. Mod. Phys. 17(1), 50–60 (1945)

Download references

Author information

Correspondence to Cédric Boutillier.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Boutillier, C., de Tilière, B. The critical Z-invariant Ising model via dimers: the periodic case. Probab. Theory Relat. Fields 147, 379–413 (2010). https://doi.org/10.1007/s00440-009-0210-1

Download citation

Mathematics Subject Classification (2000)

  • 82B20