Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Large deviations estimates for self-intersection local times for simple random walk in \({\mathbb{Z}}^3\)

  • 90 Accesses

  • 9 Citations


We obtain large deviations estimates for the self-intersection local times for a simple random walk in dimension 3. Also, we show that the main contribution to making the self-intersection large, in a time period of length n, comes from sites visited less than some power of log(n). This is opposite to the situation in dimensions larger or equal to 5. Finally, we present an application of our estimates to moderate deviations for random walk in random sceneries.

This is a preview of subscription content, log in to check access.


  1. 1.

    Asselah A., Castell F. (2003). Large deviations for Brownian motion in a random scenery. Probab. Theory Relat. Fields 126(4): 497–527

  2. 2.

    Asselah A., Castell F. (2007). A note on random walk in random scenery. Ann. de l’I.H.P. 43: 163–173

  3. 3.

    Asselah, A., Castell, F.: Self-intersection times for random walk, and random walk in random scenery in dimensions d ≥ 5. Probab. Theory Relat. Fields 138(1–2), 1–32 (2007)

  4. 4.

    Bass R.F., Chen X. (2004). Self-intersection local time: critical exponent, large deviations and laws of the iterated logarithm. Ann. Probab. 32(4): 3221–3247

  5. 5.

    Bass R.F., Chen X., Rosen J. (2005). Large deviations for renormalized self-intersection local times of stable processes. Ann. Probab. 33(3): 984–1013

  6. 6.

    Bass R.F., Chen X., Rosen J. (2006). Moderate deviations and laws of the iterated logarithm for the renormalized self-intersection local times of planar random walks. Electron. J. Probab. 11(37): 993–1030

  7. 7.

    Bass, R.F., Chen, X., Rosen, J.: Moderate deviations for the range of planar random walks. Preprint (2006), arXiv, math.PR/0602001

  8. 8.

    Bolthausen E., den Hollander F., Berg M. (2001). Moderate deviations for the volume of the Wiener sausage. Ann. Math. (2) 153(2): 355–406

  9. 9.

    Bolthausen E., Schmock U. (1997). On self-attracting d-dimensional random walks. Ann. Probab. 25(2): 531–572

  10. 10.

    Bolthausen E., Velenik Y. (2001). Critical behavior of the massless free field at the depinning transition. Comm. Math. Phys. 223(1): 161–203

  11. 11.

    Borodin, A.N.: Limit theorems for sums of independent random variables defined on a transient random walk. In: Investigations in the theory of probability distributions, IV. Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), vol. 85, pp. 17–29, 237–244 (1979)

  12. 12.

    Brydges D.C., Slade G. (1995). The diffusive phase of a model of self-interacting walks. Probab. Theory Relat. Fields 103(3): 285–315

  13. 13.

    Chen Xia., Li Wenbo V. (2004). Large and moderate deviations for intersection local times. Probab. Theory Relat. Fields 128(2): 213–254

  14. 18.

    Durrett R. (1996). Probability: Theory and Examples, 2nd edn. Duxbury Press, Belmont

  15. 19.

    Gantert N., König W., Hofstad R. (2007). Deviations of a random walk in a random scenery with stretched exponential tails. Ann. Inst. H. Poincaré Proba-Stat. 43(1): 47–76

  16. 20.

    Gantert, N., König, W., Shi, Z.: Annealed deviations of random walk in random scenery. Preprint (2004), arXiv.:math.PR/0408327

  17. 21.

    Kesten H., Spitzer F. (1979). A limit theorem related to a new class of self-similar processes. Z. Wahrsch. Verw. Gebiete 50(1): 5–25

  18. 22.

    Le Gall, J.F.: Sur le temps local d’intersection du mouvement brownien plan et la méthode de renormalisation de Varadhan. In: Séminaire de Probabilités, XIX, 1983/84, 314–331, Lecture Notes in Mathematics, vol. 1123, Springer, Berlin (1985)

  19. 23.

    Le Gall, J.F.: Exponential moments for the renormalized self-intersection local time of planar Brownian motion. In: Séminaire de Probabilités, XXVIII, 172–180, Lecture Notes in Mathematics, vol. 1583. Springer, Berlin (1994)

  20. 24.

    Madras N., Slade G. (1993). The Self-avoiding Walk. Birkhäuser, Boston

  21. 25.

    Mansmann U. (1991). The free energy of the Dirac polaron, an explicit solution. Stoch. Stoch. Rep. 34(1–2): 93–125

  22. 26.

    Varadhan S.R.S. (1966). Appendix to: Euclidean quantum field theory by K.Symanzik. In: Jost, R. (eds) Local Quantum Field Theory, pp. Academic, New York

Download references

Author information

Correspondence to Amine Asselah.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Asselah, A. Large deviations estimates for self-intersection local times for simple random walk in \({\mathbb{Z}}^3\) . Probab. Theory Relat. Fields 141, 19–45 (2008). https://doi.org/10.1007/s00440-007-0078-x

Download citation


  • Self-intersection local times
  • Random walk
  • Random sceneries

Mathematics Subject Classification (2000)

  • 60K35
  • 82C22
  • 60J25