Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Dynamical percolation on general trees

  • 67 Accesses

  • 7 Citations

Abstract

Häggström et al. (Ann Inst H Poincaré Probab Stat 33(4):497–528, 1997) have introduced a dynamical version of percolation on a graph G. When G is a tree they derived a necessary and sufficient condition for percolation to exist at some time t. In the case that G is a spherically symmetric tree (Peres and Steif in Probab Theory Relat Fields 111(1):141–165, 1998), derived a necessary and sufficient condition for percolation to exist at some time t in a given target set D. The main result of the present paper is a necessary and sufficient condition for the existence of percolation, at some time \({t\in D}\), in the case that the underlying tree is not necessary spherically symmetric. This answers a question of Yuval Peres (personal communication). We present also a formula for the Hausdorff dimension of the set of exceptional times of percolation.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Benjamini I., Pemantle R. and Peres Y. (1995). Martin capacity for Markov chains. Ann. Probab. 23(3): 1332–1346

  2. 2.

    Bertoin J. (1996). Lévy Processes. Cambridge University Press, Cambridge

  3. 3.

    Besicovitch A.S. (1942). A theorem on s-dimensional measure of sets of points. Proc. Cambridge Philos. Soc. 38: 24–27

  4. 4.

    Bochner S. (1949). Diffusion equation and stochastic processes. Proc. Natl. Acad. Sci. USA 35: 368–370

  5. 5.

    Dubins, L.E., Freedman, D.A.: Random distribution functions. In: Proceedings of the Fifth Berkeley Symposium Mathematical Statistics and Probability, 1965/1966, vol. II. Contributions to Probability Theory, Part 1, pp. 183–214 (1967)

  6. 6.

    Evans S.N. (1992). Polar and nonpolar sets for a tree indexed process. Ann. Probab. 20(2): 579–590

  7. 7.

    Frostman, O.: Potential d’equilibre et capacité des ensembles avec quelques applications á la théorie des fonctions (French). Medd. Lunds Univ. Mat. Sem. 3, 1–118 (1935)

  8. 8.

    Grimmett, G.: Percolation, 2nd edn. Springer, Berlin (1999)

  9. 9.

    Häggström O., Peres Y. and Steif J.E. (1997). Dynamical percolation. Ann. Inst. H. Poincaré Probab. Stat. 33(4): 497–528

  10. 10.

    Hunt G.A. (1958). Markoff processes and potentials. III. Ill. J. Math. 2: 151–213

  11. 11.

    Hunt, G.A.: Markoff processes and potentials. I, II. Ill. J. Math. 1, 44–93, 316–369 (1957)

  12. 12.

    Kanda M. (1978). Characterization of semipolar sets for processes with stationary independent increments. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 42(2): 141–154

  13. 13.

    Khoshnevisan D. (2002). Multiparameter Processes. Springer, New York

  14. 14.

    Lyons R. (1989). The Ising model and percolation on trees and tree-like graphs. Comm. Math. Phys. 125(2): 337–353

  15. 15.

    Lyons R. (1990). Random walks and percolation on trees. Ann. Probab. 18(3): 931–958

  16. 16.

    Lyons R. (1992). Random walks, capacity and percolation on trees. Ann. Probab. 20(4): 2043–2088

  17. 17.

    Marchal P. (1998). The best bounds in a theorem of Russell Lyons. Electron. Comm. Probab 3: 91–94

  18. 19.

    McKean H.P. (1955). Sample functions of stable processes. Ann. Math. 61(2): 564–579

  19. 20.

    Nelson E. (1958). A functional calculus using singular Laplace integrals. Trans. Am. Math. Soc. 88: 400–413

  20. 21.

    Paley R.E.A.C. and Zygmund A. (1932). A note on analytic functions in the unit circle. Proc. Cambridge Phil. Soc. 28: 266–272

  21. 22.

    Pemantle R. and Peres Y. (1995). Critical random walk in random environment on trees. Ann. Probab. 23(1): 105–140

  22. 23.

    Peres Y. and Steif J.E. (1998). The number of infinite clusters in dynamical percolation. Probab. Theory Relat. Fields 111(1): 141–165

  23. 24.

    Sato, K.: Lévy Processes and Infinitely Divisible Distributions. Cambridge University Press, Cambridge. Translated from the 1990 Japanese original; revised by the author (1999)

  24. 25.

    Sullivan D. (1984). Entropy, Hausdorff measures old and new and limit sets of geometrically finite Kleinian groups. Acta Math. 153(3–4): 259–277

  25. 26.

    Taylor S.J. and Tricot C. (1985). Packing measure and its evaluation for a Brownian path. Trans. Am. Math. Soc. 288(2): 679–699

  26. 27.

    Tricot C. (1982). Two definitions of fractional dimension. Math. Proc. Cambridge Philos. Soc 91(1): 57–74

Download references

Author information

Correspondence to Davar Khoshnevisan.

Additional information

Research supported in part by a grant from the National Science Foundation.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Khoshnevisan, D. Dynamical percolation on general trees. Probab. Theory Relat. Fields 140, 169–193 (2008). https://doi.org/10.1007/s00440-007-0061-6

Download citation

Keywords

  • Dynamical percolation
  • Capacity
  • Trees

Mathematics Subject Classification (2000)

  • Primary: 60K35
  • Secondary: 31C15
  • Secondary: 60J45