Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Sharp bounds on the density, Green function and jumping function of subordinate killed BM

  • 94 Accesses

  • 21 Citations


Subordination of a killed Brownian motion in a domain D⊂ℝd via an α/2-stable subordinator gives rise to a process Z t whose infinitesimal generator is −(−Δ| D )α/2, the fractional power of the negative Dirichlet Laplacian. In this paper we establish upper and lower estimates for the density, Green function and jumping function of Z t when D is either a bounded C 1,1 domain or an exterior C 1,1 domain. Our estimates are sharp in the sense that the upper and lower estimates differ only by a multiplicative constant.

This is a preview of subscription content, log in to check access.


  1. 1.

    Blumenthal, R.M., Getoor, R.K.: Some theorems on stable processes. Trans. Am. Math. Soc. 95, 263–273 (1960)

  2. 2.

    Blumenthal, R.M., Getoor, R.K.: Markov processes and potential theory. Academic Press, New York, 1968

  3. 3.

    Bouleau, N.: Quelques résultats probabilistes sur la subordination au sens de Bochner. In: Seminar on Potential Theory, Paris, No. 7, Lecture Notes in Math., 1061, Springer, Berlin, 1984, pp. 54–81

  4. 4.

    Chen, Z.-Q., Song, R.: Estimates on Green functions and Poisson kernels for symmetric stable processes. Math. Ann. 312, 465–501 (1998)

  5. 5.

    Chen,Z.-Q., Song, R.: General gauge and conditional gauge theorems. Ann. Probab. 30, 1313–1339 (2002)

  6. 6.

    Chung, K.L., Zhao, Z.: From Brownian motion to Schrödinger equations. Springer, Berlin, 1995

  7. 7.

    Davies, E.B.: Heat kernels and spectral theory. Cambridge University Press, Cambridge, 1989

  8. 8.

    Fabes, E.B., Garofalo, N., Salsa, S.: A backward Harnack inequality and Fatou theorem for nonnegative solutions of parabolic equations. Illinois J. Math. 30, 536–565 (1986)

  9. 9.

    Farkas, W., Jacob, N.: Sobolev spaces on non-smooth domains and Dirichlet forms related to subordinate reflecting diffusions. Math. Nachr. 224, 75–104 (2001)

  10. 10.

    Fukushima, M., Oshima, Y., Takeda, M.: Dirichlet forms and symmetric Markov processes. Walter De Gruyter, Berlin, 1994

  11. 11.

    Glover, J., Rao, M., Šikić, H., Song, R.: Γ-potentials. In: Classical and modern potential theory and applications (Chateau de Bonas, 1993), Kluwer Acad. Publ., Dordrecht, 1994, pp. 217–232

  12. 12.

    Ikeda, N., Watanabe, S.: On some relations between the harmonic measure and the Lévy measure for a certain class of Markov processes. J. Math. Kyoto Univ. 2, 79–95 (1962)

  13. 13.

    Jacob, N., Schilling, R.: Some Dirichlet spaces obtained by subordinate reflected diffusions. Rev. Mat. Iberoamericana 15, 59–91 (1999)

  14. 14.

    Kulczycki, T.: Properties of Green function of symmetric stable processes. Probab. Math. Statist. 17, 339–364 (1997)

  15. 15.

    Miyake, A.: The subordination of Lévy system for Markov processes. Proc. Japan Acad. 45, 601–604 (1969)

  16. 16.

    Pazy, A.: Semigroups of linear operators and applications to partial differential equations. Springer-Verlag, New York, 1983

  17. 17.

    Schilling, R.L.: On the domain of the generator of a subordinate semigroup. In: J. Král et al. (eds.), Potential theory– ICPT 94. Proceedings Intl. Conf. Potential Theory, Kouty (CR), 1994 de Gruyter. 1996, pp. 449–462

  18. 18.

    Song, R., Vondracek, Z.: Potential theory of subordinate killed Brownian motion in a domain. Probab. Theory Relat. Fields. 135, 578–592 (2003)

  19. 19.

    Yosida, K.: Functional analysis. 6th Edition, Springer-Verlag, Berlin, 1980

  20. 20.

    Zhang, Q.S.: The boundary behavior of heat kernels of Dirichlet Laplacians. J. Diff. Eqs. 182, 416–430 (2002)

  21. 21.

    Zhang, Q.S.: The global behavior of heat kernels in exterior domains. J. Funct. Anal. 200, 160–176 (2003)

  22. 22.

    Zolotarev, V.M.: One-dimensional stable distributions. Am. Math. Soc. Providence, RI, 1986

Download references

Author information

Correspondence to Renming Song.

Additional information

Mathematics Subject Classification (2000): Primary 60J45, Secondary 60J75, 31C25

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Song, R. Sharp bounds on the density, Green function and jumping function of subordinate killed BM. Probab. Theory Relat. Fields 128, 606–628 (2004). https://doi.org/10.1007/s00440-003-0316-9

Download citation


  •  Killed Brownian motions
  • Stable processes
  • Subordination
  • Fractional Laplacian
  • Transition density
  • Green function
  • Jumping function