Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Self-similar fragmentations derived from the stable tree I


The basic object we consider is a certain model of continuum random tree, called the stable tree. We construct a fragmentation process (F (t),t≥0) out of this tree by removing the vertices located under height t. Thanks to a self-similarity property of the stable tree, we show that the fragmentation process is also self-similar. The semigroup and other features of the fragmentation are given explicitly. Asymptotic results are given, as well as a couple of related results on continuous-state branching processes.

This is a preview of subscription content, log in to check access.


  1. 1.

    Aldous, D.J.: Exchangeability and related topics. In: École d’été de probabilités de Saint-Flour, XIII–-1983, Volume 1117 of Lecture Notes in Math., Springer, Berlin, 1985, pp. 1–198

  2. 2.

    Aldous, D.J.: The continuum random tree. III. Ann. Probab. 21, 248–289 (1993)

  3. 3.

    Aldous, D.J., Pitman, J.: The standard additive coalescent. Ann. Probab. 26, 1703–1726 (1998)

  4. 4.

    Aldous, D.J., Pitman, J.: Inhomogeneous continuum random trees and the entrance boundary of the additive coalescent. Probab. Theory Relat. Fields 118, 455–482 (2000)

  5. 5.

    Berestycki, J.: Ranked fragmentations. ESAIM Probab. Statist. 6, 157–175 (electronic), (2002) Available via http://www.emath.fr/ps/

  6. 6.

    Bertoin, J.: Lévy processes, Volume 121 of Cambridge Tracts in Mathematics. Cambridge University Press, Cambridge, 1996

  7. 7.

    Bertoin, J.: A fragmentation process connected to Brownian motion. Probab. Theory Relat. Fields 117, 289–301 (2000)

  8. 8.

    Bertoin, J.: Homogeneous fragmentation processes. Probab. Theory Relat. Fields 121, 301–318 (2001)

  9. 9.

    Bertoin, J.: Self-similar fragmentations. Ann. Inst. Henri Poincare Probab. Stat. 38, 319–340 (2002)

  10. 10.

    Bertoin, J.: The asymptotic behavior of fragmentation processes. J. Eur. Math. Soc. JEMS, 2003. To appear

  11. 11.

    Biane, P., Yor, M.: Quelques précisions sur le méandre brownien. Bull. Sci. Math. 112, 101–109 (1988)

  12. 12.

    Chaumont, L.: Excursion normalisée, méandre et pont pour les processus de Lévy stables. Bull. Sci. Math. 121, 377–403 (1997)

  13. 13.

    Duquesne, T.: A limit theorem for the contour process of conditioned Galton-Watson trees. Ann. Probab. 31, 996–1027 (2003)

  14. 14.

    Duquesne, T., Le Gall, J.-F.: Random trees, Lévy processes and spatial branching processes. Astérisque 281, vi+147 (2002)

  15. 15.

    Evans, S.N., Pitman, J.: Construction of Markovian coalescents. Ann. Inst. Henri Poincare Probab. Stat. 34, 339–383 (1998)

  16. 16.

    Jeulin, T.: Semi-martingales et grossissement d’une filtration, Volume 833 of Lecture Notes in Mathematics. Springer, Berlin, 1980

  17. 17.

    Jeulin, T.: Application de la théorie du grossissement à l’étude des temps locaux browniens. In: T. Jeulin and M. Yor, (eds.), Grossissements de filtrations: exemples et applications, Volume 1118 of Lecture Notes in Mathematics, Springer-Verlag, Berlin, 1985, pp. vi+315. Papers from the seminar on stochastic calculus held at the Université de Paris VI, Paris, 1982/1983

  18. 18.

    Kersting, G.: On the height profile of a conditioned Galton-Watson tree. Preprint, 1998

  19. 19.

    Kingman, J.F.C.: The representation of partition structures. J. London Math. Soc. 18, 374–380 (1978)

  20. 20.

    Lambert, A.: Le processus de branchement conditionné à rester positif. thèse de doctorat de l’Université Paris VI, Chapitre 3, 2001

  21. 21.

    Le Gall, J.-F.: The uniform random tree in a Brownian excursion. Probab. Theory Relat. Fields 96, 369–383 (1993)

  22. 22.

    Miermont, G.: Ordered additive coalescent and fragmentations associated to Levy processes with no positive jumps. Electron. J. Probab. 6, 33 (electronic), (2001)

  23. 23.

    Miermont, G.: Self-similar fragmentations derived from the stable tree II: splitting at nodes. Preprint, 2003 Available via http://www.dma.ens.fr.

  24. 24.

    Miermont, G., Schweinsberg, J.: Self-similar fragmentations and stable subordinators. Sém. Probab., XXXVII, 2003. To appear

  25. 25.

    Perman, M., Pitman, J., Yor, M.: Size-biased sampling of Poisson point processes and excursions. Probab. Theory Relat. Fields 92, 21–39 (1992)

  26. 26.

    Pitman, J.: Combinatorial stochastic processes. notes pour l’école d’été de probabilités de Saint-Flour, preprint, 2002. To appear. Available via http://www.stat.berkeley.edu

  27. 27.

    Pitman, J.: Poisson-Kingman partitions. Technical Report 625, Dept. Statistics, UC Berkeley, 2002. Available via http://www.stat.berkeley.edu

  28. 28.

    Pitman, J., Yor, M.: A decomposition of Bessel bridges. Z. Wahrsch. Verw. Gebiete 59, 425–457 (1982)

  29. 29.

    Pitman, J., Yor, M.: The two-parameter Poisson-Dirichlet distribution derived from a stable subordinator. Ann. Probab. 25, 855–900 (1997)

  30. 30.

    Revuz, D., Yor, M.: Continuous martingales and Brownian motion, volume 293 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, Berlin, third edition, 1999

  31. 31.

    Skorohod, A.V.: Asymptotic formulas for stable distribution laws. In: Select. Transl. Math. Statist. and Probability, Vol. 1, Inst. Math. Statist. and Am. Math. Soc., Providence, R.I., 1961, pp. 157–161

  32. 32.

    Takács, L.: Combinatorial methods in the theory of stochastic processes. John Wiley & Sons Inc., New York, 1967

Download references

Author information

Correspondence to Grégory Miermont.

Additional information

Research supported in part by NSF Grant DMS-0071448.

Mathematics Subject Classification (2000): 60J25, 60G52, 60J80

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Miermont, G. Self-similar fragmentations derived from the stable tree I. Probab. Theory Relat. Fields 127, 423–454 (2003). https://doi.org/10.1007/s00440-003-0295-x

Download citation


  • Self-similar fragmentation
  • stable tree
  • stable process
  • continuous state branching process