Advertisement

Exploring the interactions between the human and viral genomes

  • Jacques FellayEmail author
  • Vincent Pedergnana
Review
Part of the following topical collections:
  1. Human genetics of infectious diseases

Abstract

Over the last decade, genome-wide association studies led to major advances in identifying human genetic variants associated with infectious disease susceptibility. On the pathogen side, comparable methods are now applied to identify disease-modulating pathogen variants. As host and pathogen variants jointly determine disease outcomes, the most recent development has been to explore simultaneously host and pathogen genomes, through so-called genome-to-genome studies. In this review, we provide some background on the development of genome-to-genome analysis and we detail the first wave of studies in this emerging field, which focused on patients chronically infected with HIV and hepatitis C virus. We also discuss the need for novel statistical methods to better tackle the issues of population stratification and multiple testing. Finally, we speculate on future research areas where genome-to-genome analysis may prove to be particularly effective.

Notes

Compliance with ethical standards

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

References

  1. Alter G et al (2011) HIV-1 adaptation to NK-cell-mediated immune pressure. Nature 476:96–100.  https://doi.org/10.1038/nature10237 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Ampuero J, Romero-Gómez M, Reddy KR (2014) Review article: HCV genotype 3—the new treatment challenge. Aliment Pharmacol Ther 39:686–698.  https://doi.org/10.1111/apt.12646 CrossRefPubMedGoogle Scholar
  3. Ansari MA et al (2017) Genome-to-genome analysis highlights the effect of the human innate and adaptive immune systems on the hepatitis C virus. Nat Genet 49:666–673.  https://doi.org/10.1038/ng.3835 CrossRefPubMedPubMedCentralGoogle Scholar
  4. Ansari MA et al (2019) Interferon lambda 4 impacts the genetic diversity of hepatitis C virus. Elife.  https://doi.org/10.7554/eLife.42463 CrossRefPubMedPubMedCentralGoogle Scholar
  5. Bartha I et al (2013) A genome-to-genome analysis of associations between human genetic variation, HIV-1 sequence diversity, and viral control. eLife 2:e01123.  https://doi.org/10.7554/elife.01123 CrossRefPubMedPubMedCentralGoogle Scholar
  6. Bhattacharya T et al (2007) Founder effects in the assessment of HIV polymorphisms and HLA allele associations. Science 315:1583–1586.  https://doi.org/10.1126/science.1131528 CrossRefPubMedGoogle Scholar
  7. Bowen DG, Walker CM (2005) Adaptive immune responses in acute and chronic hepatitis C virus infection. Nature 436:946–952.  https://doi.org/10.1038/nature04079 CrossRefPubMedGoogle Scholar
  8. Brumme ZL et al (2007) Evidence of differential HLA class I-mediated viral evolution in functional and accessory/regulatory genes of HIV-1. PLoS Pathog 3:e94.  https://doi.org/10.1371/journal.ppat.0030094 CrossRefPubMedPubMedCentralGoogle Scholar
  9. Casanova JL, Abel L (2013) The genetic theory of infectious diseases: a brief history and selected illustrations. Annu Rev Genom Hum Genet.  https://doi.org/10.1146/annurev-genom-091212-153448 CrossRefGoogle Scholar
  10. Chaturvedi N et al (2019) Adaptation of hepatitis C virus to interferon lambda polymorphism across multiple viral genotypes. Elife.  https://doi.org/10.7554/eLife.42542 CrossRefPubMedPubMedCentralGoogle Scholar
  11. Chowell D et al (2018) Patient HLA class I genotype influences cancer response to checkpoint blockade immunotherapy. Science 359:582–587.  https://doi.org/10.1126/science.aao4572 CrossRefPubMedGoogle Scholar
  12. Fellay J et al (2007) A whole-genome association study of major determinants for host control of HIV-1. Science 317:944–947.  https://doi.org/10.1126/science.1143767 CrossRefPubMedPubMedCentralGoogle Scholar
  13. Fitzmaurice K et al (2011) Molecular footprints reveal the impact of the protective HLA-A*03 allele in hepatitis C virus infection. Gut 60:1563–1571.  https://doi.org/10.1136/gut.2010.228403 CrossRefPubMedPubMedCentralGoogle Scholar
  14. Ge D et al (2009) Genetic variation in IL28B predicts hepatitis C treatment-induced viral clearance. Nature 461:399–401CrossRefGoogle Scholar
  15. Goulder PJ, Walker BD (2012) HIV and HLA class I: an evolving relationship. Immunity 37:426–440.  https://doi.org/10.1016/j.immuni.2012.09.005 CrossRefPubMedPubMedCentralGoogle Scholar
  16. Goulder PJ et al (2001) Evolution and transmission of stable CTL escape mutations in HIV infection. Nature 412:334–338.  https://doi.org/10.1038/35085576 CrossRefPubMedGoogle Scholar
  17. Heim MH, Thimme R (2014) Innate and adaptive immune responses in HCV infections. J Hepatol 61:S14–S25.  https://doi.org/10.1016/j.jhep.2014.06.035 CrossRefPubMedGoogle Scholar
  18. Hill AV (2012) Evolution, revolution and heresy in the genetics of infectious disease susceptibility. Philos Trans R Soc Lond B Biol Sci 367:840–849.  https://doi.org/10.1098/rstb.2011.0275 CrossRefPubMedPubMedCentralGoogle Scholar
  19. Jobling MA, Jobling MA (2013) Human evolutionary genetics, 2nd edn. Garland Science, New YorkCrossRefGoogle Scholar
  20. Kawashima Y et al (2009) Adaptation of HIV-1 to human leukocyte antigen class I. Nature 458:641–645.  https://doi.org/10.1038/nature07746 CrossRefPubMedPubMedCentralGoogle Scholar
  21. Khor CC, Hibberd ML (2011) Revealing the molecular signatures of host-pathogen interactions. Genome Biol 12:229.  https://doi.org/10.1186/gb-2011-12-10-229 CrossRefPubMedPubMedCentralGoogle Scholar
  22. Lauer GM, Walker BD (2001) Hepatitis C virus infection. N Engl J Med 345:41–52CrossRefGoogle Scholar
  23. Lees JA et al (2019) Joint sequencing of human and pathogen genomes reveals the genetics of pneumococcal meningitis. Nat Commun 10:2176.  https://doi.org/10.1038/s41467-019-09976-3 CrossRefPubMedPubMedCentralGoogle Scholar
  24. McLaren PJ et al (2017) Evaluating the impact of functional genetic variation on HIV-1 control. J Infect Dis 216:1063–1069.  https://doi.org/10.1093/infdis/jix470 CrossRefPubMedPubMedCentralGoogle Scholar
  25. Moore CB, John M, James IR, Christiansen FT, Witt CS, Mallal SA (2002) Evidence of HIV-1 adaptation to HLA-restricted immune responses at a population level. Science 296:1439–1443.  https://doi.org/10.1126/science.1069660 CrossRefPubMedGoogle Scholar
  26. Naret O, Chaturvedi N, Bartha I, Hammer C, Fellay J, Swiss HIVCS (2018) Correcting for population stratification reduces false positive and false negative results in joint analyses of host and pathogen genomes. Front Genet 9:266.  https://doi.org/10.3389/fgene.2018.00266 CrossRefPubMedPubMedCentralGoogle Scholar
  27. Palmer DS et al (2019) Mapping the drivers of within-host pathogen evolution using massive data sets. Nat Commun 10:3017.  https://doi.org/10.1038/s41467-019-10724-w CrossRefPubMedPubMedCentralGoogle Scholar
  28. Patin E et al (2012) Genome-wide association study identifies variants associated with progression of liver fibrosis from HCV infection. Gastroenterology 143:1212–1244.  https://doi.org/10.1053/j.gastro.2012.07.097 CrossRefGoogle Scholar
  29. Phillips RE et al (1991) Human immunodeficiency virus genetic variation that can escape cytotoxic T cell recognition. Nature 354:453–459.  https://doi.org/10.1038/354453a0 CrossRefPubMedGoogle Scholar
  30. Power RA, Parkhill J, de Oliveira T (2017) Microbial genome-wide association studies: lessons from human GWAS. Nat Rev Genet 18:41–50.  https://doi.org/10.1038/nrg.2016.132 CrossRefPubMedGoogle Scholar
  31. Simes RJ (1986) An improved Bonferroni procedure for multiple tests of significance. Biometrika 73:751–754.  https://doi.org/10.1093/biomet/73.3.751 CrossRefGoogle Scholar
  32. Simmonds P (2004) Genetic diversity and evolution of hepatitis C virus—15 years on. J Gen Virol 85:3173–3188.  https://doi.org/10.1099/vir.0.80401-0 CrossRefPubMedGoogle Scholar
  33. Thomas DL et al (2009) Genetic variation in IL28B and spontaneous clearance of hepatitis C virus. Nature 461:798–801CrossRefGoogle Scholar
  34. Wang M et al (2018) Two-way mixed-effects methods for joint association analysis using both host and pathogen genomes. Proc Natl Acad Sci U S A 115:E5440–E5449.  https://doi.org/10.1073/pnas.1710980115 CrossRefPubMedPubMedCentralGoogle Scholar
  35. Wilson DJ (2019) The harmonic mean p value for combining dependent tests. Proc Natl Acad Sci U S A 116:1195–1200.  https://doi.org/10.1073/pnas.1814092116 CrossRefPubMedPubMedCentralGoogle Scholar
  36. Woolhouse ME, Webster JP, Domingo E, Charlesworth B, Levin BR (2002) Biological and biomedical implications of the co-evolution of pathogens and their hosts. Nat Genet 32:569–577.  https://doi.org/10.1038/ng1202-569 CrossRefPubMedGoogle Scholar
  37. Woolthuis RG, van Dorp CH, Kesmir C, de Boer RJ, van Boven M (2016) Long-term adaptation of the influenza A virus by escaping cytotoxic T cell recognition. Sci Rep 6:33334.  https://doi.org/10.1038/srep33334 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Life SciencesÉcole Polytechnique Fédérale de LausanneLausanneSwitzerland
  2. 2.Precision Medicine UnitUniversity Hospital and University of LausanneLausanneSwitzerland
  3. 3.Swiss Institute of BioinformaticsLausanneSwitzerland
  4. 4.French National Center for Scientific Research (CNRS), Laboratory MIVEGEC (CNRS, IRD, UM)MontpellierFrance

Personalised recommendations