Advertisement

Human Genetics

, Volume 138, Issue 11–12, pp 1341–1357 | Cite as

First genome-wide association study of non-severe malaria in two birth cohorts in Benin

  • Jacqueline MiletEmail author
  • Anne Boland
  • Pierre Luisi
  • Audrey Sabbagh
  • Ibrahim Sadissou
  • Paulin Sonon
  • Nadia Domingo
  • Friso Palstra
  • Laure Gineau
  • David Courtin
  • Achille Massougbodji
  • André Garcia
  • Jean-François Deleuze
  • Hervé Perdry
Original Investigation

Abstract

Recent research efforts to identify genes involved in malaria susceptibility using genome-wide approaches have focused on severe malaria. Here, we present the first GWAS on non-severe malaria designed to identify genetic variants involved in innate immunity or innate resistance mechanisms. Our study was performed on two cohorts of infants from southern Benin (525 and 250 individuals used as discovery and replication cohorts, respectively) closely followed from birth to 18–24 months of age, with an assessment of a space- and time-dependent environmental risk of exposure. Both the recurrence of mild malaria attacks and the recurrence of malaria infections as a whole (symptomatic and asymptomatic) were considered. Post-GWAS functional analyses were performed using positional, eQTL, and chromatin interaction mapping to identify the genes underlying association signals. Our study highlights a role of PTPRT, a tyrosine phosphatase receptor involved in STAT3 pathway, in the protection against both mild malaria attacks and malaria infections (p = 9.70 × 10−8 and p = 1.78 × 10−7, respectively, in the discovery cohort). Strong statistical support was also found for a role of MYLK4 (meta-analysis, p = 5.29 × 10−8 with malaria attacks), and for several other genes, whose biological functions are relevant in malaria infection. Results shows that GWAS on non-severe malaria can successfully identify new candidate genes and inform physiological mechanisms underlying natural protection against malaria.

Notes

Acknowledgements

This research is a collaboration between the CEA/ Jacob/CNRGH and the IRD/UMR216. We wish to thanks the collaborators of the CERPAGE who participated actively in the longitudinal follow-ups. Longitudinal follow-ups were funded by the French National Research Agency (ANR-SEST 2006 040-01 and ANR-PRSP 2010 012-001); the French ministry of Research and Technology (REFS Nu2006-22) and the Institut de Recherche pour le Développement (IRD). We made use of data previously generated in the MiPPAD study (EDCTP-IP.07.31080.002). The genome-wide scan was supported by the Centre National de Recherche en Génomique Humaine (CNRGH). We are grateful to the Genotoul bioinformatics platform Toulouse Midi-Pyrenees (Bioinfo Genotoul) for providing computing and storage resources.

Compliance with ethical standards

Conflict of interest

The authors have no competing financial interests.

Supplementary material

439_2019_2079_MOESM1_ESM.docx (7.7 mb)
Supplementary material 1 (DOCX 7890 kb)
439_2019_2079_MOESM2_ESM.docx (21 kb)
Supplementary material 2 (DOCX 21 kb)
439_2019_2079_MOESM3_ESM.xlsx (46 kb)
Supplementary material 3 (XLSX 46 kb)
439_2019_2079_MOESM4_ESM.xlsx (31 kb)
Supplementary material 4 (XLSX 30 kb)
439_2019_2079_MOESM5_ESM.xlsx (22 kb)
Supplementary material 5 (XLSX 21 kb)

References

  1. Accrombessi M, Ouédraogo S, Agbota GC, Gonzalez R, Massougbodji A, Menéndez C, Cot M (2015) Malaria in pregnancy is a predictor of infant haemoglobin concentrations during the first year of life in Benin, west Africa. PLoS One 10(6):e0129510.  https://doi.org/10.1371/journal.pone.0129510 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Adzhubei IA, Schmidt S, Peshkin L, Ramensky VE, Gerasimova A, Bork P, Kondrashov AS, Sunyaev SR (2010) A method and server for predicting damaging missense mutations. Nat Methods 7(4):248–249.  https://doi.org/10.1038/nmeth0410-248 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Anderson CA, Pettersson FH, Clarke GM, Cardon LR, Morris AP, Zondervan KT (2010) Data quality control in genetic case–control association studies. Nat Protoc 5(9):1564–1573.  https://doi.org/10.1038/nprot.2010.116 CrossRefPubMedPubMedCentralGoogle Scholar
  4. Baaklini S, Afridi S, Nguyen TN, Koukouikila-Koussounda F, Ndounga M, Imbert J, Torres M, Pradel L, Ntoumi F, Rihet P (2017) Beyond genome-wide scan: association of a cis-regulatory NCR5 variant with mild malaria in a population living in the Republic of Congo. PLoS One 12(11):e0187818.  https://doi.org/10.1371/journal.pone.0187818 CrossRefPubMedPubMedCentralGoogle Scholar
  5. Band G, Le QS, Jostins L, Pirinen M, Kivinen K, Jallow M, Sisay-Joof F et al (2013) Imputation-based meta-analysis of severe malaria in three African populations. PLoS Genet 9(5):e1003509.  https://doi.org/10.1371/journal.pgen.1003509 CrossRefPubMedPubMedCentralGoogle Scholar
  6. Bhatt S, Weiss DJ, Cameron E, Bisanzio D, Mappin B, Dalrymple U, Battle K et al (2015) The effect of malaria control on Plasmodium falciparum in Africa between 2000 and 2015. Nature 526(7572):207–211.  https://doi.org/10.1038/nature15535 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Bouaziz O, Courtin D, Cottrell G, Milet J, Nuel G, Garcia A (2018) Is Placental malaria a long-term risk factor for mild malaria attack in infancy? Revisiting a paradigm. Clin Infect Dis 66(6):930–935.  https://doi.org/10.1093/cid/cix899 CrossRefPubMedGoogle Scholar
  8. Bousema T, Drakeley C, Gesase S, Hashim R, Magesa S, Mosha F, Otieno S et al (2010) Identification of hot spots of malaria transmission for targeted malaria control. J Infect Dis 201(11):1764–1774.  https://doi.org/10.1086/652456 CrossRefPubMedGoogle Scholar
  9. Boyle AP, Hong EL, Hariharan M, Cheng Y, Schaub MA, Kasowski M, Karczewski KJ et al (2012) Annotation of functional variation in personal genomes using regulomeDB. Genome Res 22(9):1790–1797.  https://doi.org/10.1101/gr.137323.112 CrossRefPubMedPubMedCentralGoogle Scholar
  10. Brisebarre A, Kumulungui B, Sawadogo S, Atkinson A, Garnier S, Fumoux F, Rihet P (2014) A genome scan for Plasmodium falciparum malaria identifies quantitative trait loci on chromosomes 5q31, 6p21.3, 17p12, and 19p13. Malaria J 13(May):198.  https://doi.org/10.1186/1475-2875-13-198 CrossRefGoogle Scholar
  11. Cottrell G, Kouwaye B, Pierrat C, Le Port A, Bouraïma A, Fonton N, Hounkonnou MN, Massougbodji A, Corbel V, Garcia A (2012) Modeling the influence of local environmental factors on malaria transmission in Benin and its implications for cohort study. PLoS One 7(1):e28812.  https://doi.org/10.1371/journal.pone.0028812 CrossRefPubMedPubMedCentralGoogle Scholar
  12. d'Almeida TC, Sadissou I, Milet J, Cottrell G, Mondière A, Avokpaho E, Gineau L et al (2017) Soluble human leukocyte antigen-G during pregnancy and infancy in Benin: mother/child resemblance and association with the risk of malaria infection and low birth weight. PLoS One 12(2):e0171117.  https://doi.org/10.1371/journal.pone.0171117 CrossRefPubMedPubMedCentralGoogle Scholar
  13. Damien GB, Djènontin A, Rogier C, Corbel V, Bangana SB, Chandre F, Akogbéto M, Kindé-Gazard D, Massougbodji A, Henry M-C (2010) Malaria infection and disease in an area with pyrethroid-resistant vectors in Southern Benin. Malaria J 9(December):380.  https://doi.org/10.1186/1475-2875-9-380 CrossRefGoogle Scholar
  14. Dandine-Roulland C, Perdry H (2018) Genome-wide data manipulation, association analysis and heritability estimates in R with Gaston 1.5. Hum Hered 83:1–29.  https://doi.org/10.1159/000488519 CrossRefGoogle Scholar
  15. Das S, Forer L, Schönherr S, Sidore C, Locke AE, Kwong A, Vrieze SI et al (2016) Next-generation genotype imputation service and methods. Nat Genet 48(10):1284–1287.  https://doi.org/10.1038/ng.3656 CrossRefPubMedPubMedCentralGoogle Scholar
  16. Delaneau O, Marchini J, Zagury J-F (2011) A linear complexity phasing method for thousands of genomes. Nat Methods 9(2):179–181.  https://doi.org/10.1038/nmeth.1785 CrossRefPubMedGoogle Scholar
  17. Delaneau O, Zagury J-F, Marchini J (2013) Improved whole-chromosome phasing for disease and population genetic studies. Nat Methods 10(1):5–6.  https://doi.org/10.1038/nmeth.2307 CrossRefPubMedGoogle Scholar
  18. Driss A, Hibbert JM, Wilson NO, Iqbal SA, Adamkiewicz TV, Stiles JK (2011) Genetic polymorphisms linked to susceptibility to malaria. Malaria J 10(September):271.  https://doi.org/10.1186/1475-2875-10-271 CrossRefGoogle Scholar
  19. Flori L, Kumulungui B, Aucan C, Esnault C, Traoré AS, Fumoux F, Rihet P (2003) Linkage and association between Plasmodium falciparum blood infection levels and chromosome 5q31-Q33. Genes Immun 4(4):265–268.  https://doi.org/10.1038/sj.gene.6363960 CrossRefPubMedGoogle Scholar
  20. Gao H, Xiaoming W, Sun Y, Zhou S, Silberstein LE, Zhu Z (2012) Suppression of homeobox transcription factor VentX promotes expansion of human hematopoietic stem/multipotent progenitor cells. J Biol Chem 287(35):29979–29987.  https://doi.org/10.1074/jbc.M112.383018 CrossRefPubMedPubMedCentralGoogle Scholar
  21. Garcia A, Marquet S, Bucheton B, Hillaire D, Cot M, Fievet N, Dessein AJ, Abel L (1998) Linkage analysis of blood Plasmodium falciparum levels: interest of the 5q31-q33 chromosome region. Am J Trop Med Hyg 58(6):705–709CrossRefGoogle Scholar
  22. Gong L, Maiteki-Sebuguzi C, Rosenthal PJ, Hubbard AE, Drakeley CJ, Dorsey G, Greenhouse B (2012) Evidence for both innate and acquired mechanisms of protection from Plasmodium falciparum in children with sickle cell trait. Blood 119(16):3808–3814.  https://doi.org/10.1182/blood-2011-08-371062 CrossRefPubMedPubMedCentralGoogle Scholar
  23. González R, Mombo-Ngoma G, Ouédraogo S, Kakolwa MA, Abdulla S, Accrombessi M, Aponte JJ et al (2014) Intermittent preventive treatment of malaria in pregnancy with mefloquine in HIV-negative women: a multicentre randomized controlled trial. PLoS Med 11(9):e1001733.  https://doi.org/10.1371/journal.pmed.1001733 CrossRefPubMedPubMedCentralGoogle Scholar
  24. Greenwood BM (1989) The microepidemiology of malaria and its importance to malaria control. Trans R Soc Trop Med Hyg 83(Suppl):25–29CrossRefGoogle Scholar
  25. Heung LJ, Luberto C, Del Poeta M (2006) Role of sphingolipids in microbial pathogenesis. Infect Immun 74(1):28–39.  https://doi.org/10.1128/IAI.74.1.28-39.2006 CrossRefPubMedPubMedCentralGoogle Scholar
  26. Higgs DR (2013) The molecular basis of α-Thalassemia. Cold Spring Harbor Perspect Med 3:1CrossRefGoogle Scholar
  27. Jepson A, Sisay-Joof F, Banya W, Hassan-King M, Frodsham A, Bennett S, Hill AV, Whittle H (1997) Genetic linkage of mild malaria to the major histocompatibility complex in Gambian children: study of affected sibling pairs. BMJ (Clinical Research Ed.) 315(7100):96–97CrossRefGoogle Scholar
  28. Kircher M, Witten DM, Jain P, O’Roak BJ, Cooper GM, Shendure J (2014) A general framework for estimating the relative pathogenicity of human genetic variants. Nat Genet 46(3):310–315.  https://doi.org/10.1038/ng.2892 CrossRefPubMedPubMedCentralGoogle Scholar
  29. Kwiatkowski DP (2005) How malaria has affected the human genome and what human genetics can teach us about malaria. Am J Hum Genet 77(2):171–192.  https://doi.org/10.1086/432519 CrossRefPubMedPubMedCentralGoogle Scholar
  30. Labaied M, Dagan A, Dellinger M, Gèze M, Egée S, Thomas SL, Wang C, Gatt S, Grellier P (2004) Anti-plasmodium activity of ceramide analogs. Malaria J 3(December):49.  https://doi.org/10.1186/1475-2875-3-49 CrossRefGoogle Scholar
  31. Leffler EM, Band G, Busby GBJ, Kivinen K, Le QS, Clarke GM, Bojang KA et al (2017) Resistance to malaria through structural variation of red blood cell invasion receptors. Science (New York, N.Y.) 356:6343.  https://doi.org/10.1126/science.aam6393 CrossRefGoogle Scholar
  32. Liu M, Amodu A, Pitts S, Patrickson J, Hibbert JM, Battle M, Ofori-Acquah SF, Stiles JK (2012) Heme mediated STAT3 activation in severe malaria. PLoS One 7(3):e34280.  https://doi.org/10.1371/journal.pone.0034280 CrossRefPubMedPubMedCentralGoogle Scholar
  33. Liu M, Solomon W, Cespedes JC, Wilson NO, Ford B, Stiles JK (2018) Neuregulin-1 attenuates experimental cerebral malaria (ECM) pathogenesis by regulating ErbB4/AKT/STAT3 signaling. J Neuroinflam 15(1):104.  https://doi.org/10.1186/s12974-018-1147-z CrossRefGoogle Scholar
  34. Lopera-Mesa TM, Doumbia S, Konaté D, Anderson JM, Doumbouya M, Keita AS, Diakité Seidina A S et al (2015) Effect of red blood cell variants on childhood malaria in Mali: a prospective cohort study. Lancet Haematol 2(4):e140–e149.  https://doi.org/10.1016/S2352-3026(15)00043-5 CrossRefPubMedPubMedCentralGoogle Scholar
  35. Mackinnon MJ, Mwangi TW, Snow RW, Marsh K, Williams TN (2005) Heritability of malaria in Africa. PLoS Med 2(12):e340.  https://doi.org/10.1371/journal.pmed.0020340 CrossRefPubMedPubMedCentralGoogle Scholar
  36. Marquet S (2017) Overview of human genetic susceptibility to malaria: from parasitemia control to severe disease. Infect Genet Evol J Mol Epidemiol Evol Genet Infect Dis.  https://doi.org/10.1016/j.meegid.2017.06.001 CrossRefGoogle Scholar
  37. Milet J, Nuel G, Watier L, Courtin D, Slaoui Y, Senghor P, Migot-Nabias F, Gaye O, Garcia A (2010) Genome wide linkage study, using a 250 K SNP map, of Plasmodium falciparum infection and mild malaria attack in a Senegalese population. PLoS One 5(7):e11616.  https://doi.org/10.1371/journal.pone.0011616 CrossRefPubMedPubMedCentralGoogle Scholar
  38. Malaria Genomic Epidemiology Network, Malaria Genomic Epidemiology Network (2014) Reappraisal of known malaria resistance loci in a large multicenter study. Nat Genet 46(11):1197–1204.  https://doi.org/10.1038/ng.3107 CrossRefPubMedCentralGoogle Scholar
  39. Malaria Genomic Epidemiology Network, Band G, Rockett KA, Spencer Chris CA, Kwiatkowski DP (2015) A novel locus of resistance to severe malaria in a region of ancient balancing selection. Nature 526(7572):253–257.  https://doi.org/10.1038/nature15390 CrossRefPubMedCentralGoogle Scholar
  40. Nikolaienko RM, Agyekum B, Bouyain S (2012) Receptor protein tyrosine phosphatases and cancer. Cell Adhes Migr 6(4):356–364.  https://doi.org/10.4161/cam.21242 CrossRefGoogle Scholar
  41. Pankova-Kholmyansky I, Dagan A, Gold D, Zaslavsky Z, Skutelsky E, Gatt S, Flescher E (2003) Ceramide mediates growth inhibition of the Plasmodium falciparum parasite. Cell Mol Life Sci 60(3):577–587CrossRefGoogle Scholar
  42. Peyser ND, Freilino M, Wang L, Zeng Y, Li H, Johnson DE, Grandis JR (2016) Frequent promoter hypermethylation of PTPRT increases STAT3 activation and sensitivity to STAT3 inhibition in head and neck cancer. Oncogene 35(9):1163–1169.  https://doi.org/10.1038/onc.2015.171 CrossRefPubMedGoogle Scholar
  43. Le Port A, Cottrel G, Martin-Prevel Y, Migot-Nabias F, Cot M, Garcia A (2012) First malaria infections in a cohort of infants in Benin: biological, environmental and genetic determinants. description of the study site, population methods and preliminary results. BMJ Open 2(2):e000342.  https://doi.org/10.1136/bmjopen-2011-000342 CrossRefPubMedPubMedCentralGoogle Scholar
  44. Le Port A, Cottrell G, Chandre F, Cot M, Massougbodji A, Garcia A (2013) Importance of adequate local spatiotemporal transmission measures in malaria cohort studies: application to the relation between placental malaria and first malaria infection in infants. Am J Epidemiol 178(1):136–143.  https://doi.org/10.1093/aje/kws452 CrossRefPubMedGoogle Scholar
  45. Pruim RJ, Welch RP, Sanna S, Teslovich TM, Chines PS, Gliedt TP, Boehnke M, Abecasis GR, Willer CJ (2010) LocusZoom: regional visualization of genome-wide association scan results. Bioinformatics 26(18):2336–2337.  https://doi.org/10.1093/bioinformatics/btq419 CrossRefPubMedPubMedCentralGoogle Scholar
  46. R Core Team (2017) ‘R: a language and environment for statistical computing. R Foundation for Statistical Computing’. R Foundation for Statistical Computing. https://www.R-project.org
  47. Ravenhall M, Campino S, Sepúlveda N, Manjurano A, Nadjm B, Mtove G, Wangai H et al (2018) Novel genetic polymorphisms associated with severe malaria and under selective pressure in North-Eastern Tanzania. PLoS Genet 14(1):e1007172.  https://doi.org/10.1371/journal.pgen.1007172 CrossRefPubMedPubMedCentralGoogle Scholar
  48. Rentzsch P, Witten D, Cooper GM, Shendure J, Kircher M (2019) CADD: predicting the deleteriousness of variants throughout the human genome. Nucleic Acids Res 47(D1):D886–D894.  https://doi.org/10.1093/nar/gky1016 CrossRefPubMedGoogle Scholar
  49. Rihet P, Traoré Y, Abel L, Aucan C, Traoré-Leroux T, Fumoux F (1998) Malaria in humans: Plasmodium falciparum blood infection levels are linked to chromosome 5q31-q33. Am J Hum Genet 63(2):498–505.  https://doi.org/10.1086/301967 CrossRefPubMedPubMedCentralGoogle Scholar
  50. Safer D, Brenes M, Dunipace S, Schad G (2007) Urocanic acid is a major chemoattractant for the skin-penetrating parasitic nematode Strongyloides stercoralis. Proc Natl Acad Sci USA 104(5):1627–1630.  https://doi.org/10.1073/pnas.0610193104 CrossRefPubMedGoogle Scholar
  51. Sakuntabhai A, Ndiaye R, Casadémont I, Peerapittayamongkol C, Peerapittayamonkol C, Rogier C, Tortevoye P et al (2008) Genetic determination and linkage mapping of Plasmodium falciparum malaria related traits in Senegal. PLoS One 3(4):e2000.  https://doi.org/10.1371/journal.pone.0002000 CrossRefPubMedPubMedCentralGoogle Scholar
  52. Schmitt AD, Hu M, Jung I, Xu Z, Qiu Y, Tan CL, Li Y et al (2016) A compendium of chromatin contact maps reveals spatially active regions in the human genome. Cell Rep 17(8):2042–2059.  https://doi.org/10.1016/j.celrep.2016.10.061 CrossRefPubMedPubMedCentralGoogle Scholar
  53. Turner SD (2014) qqman: Q-Q and Manhattan plots for GWAS Data. biorXiv.  https://doi.org/10.1101/005165 CrossRefGoogle Scholar
  54. Sudmant PH, Rausch T, Gardner EJ, Handsaker RE, Abyzov A, Huddleston J, Zhang Y et al (2015) An integrated map of structural variation in 2,504 human genomes. Nature 526(7571):75–81.  https://doi.org/10.1038/nature15394 CrossRefPubMedPubMedCentralGoogle Scholar
  55. Szklarczyk D, Morris JH, Cook H, Kuhn M, Wyder S, Simonovic M, Santos A et al (2017) The STRING database in 2017: quality-controlled protein-protein association networks, made broadly accessible. Nucleic Acids Res 45(D1):D362–D368.  https://doi.org/10.1093/nar/gkw937 CrossRefGoogle Scholar
  56. Tan I, Leung T (2009) Myosin light chain kinases: division of work in cell migration. Cell Adhes Migr 3(3):256–258CrossRefGoogle Scholar
  57. Therneau TM (2018) Coxme: mixed effects Cox models. https://CRAN.R-project.org/package=coxme
  58. Therneau TM, Grambsch (2000) Modeling survival data: extending the Cox model. Statistics for biology and health. New York: Springer. http://www.springer.com/us/book/9780387987842 Google Scholar
  59. Timmann C, Evans JA, König IR, Kleensang A, Rüschendorf F, Lenzen J, Sievertsen J et al (2007) Genome-wide linkage analysis of malaria infection intensity and mild disease. PLoS Genet 3(3):e48.  https://doi.org/10.1371/journal.pgen.0030048 CrossRefPubMedPubMedCentralGoogle Scholar
  60. Timmann C, Thye T, Vens M, Evans J, May J, Ehmen C, Sievertsen J et al (2012) Genome-wide association study indicates two novel resistance loci for severe malaria. Nature 489(7416):443–446.  https://doi.org/10.1038/nature11334 CrossRefPubMedGoogle Scholar
  61. Verra F, Mangano VD, Modiano D (2009) Genetics of susceptibility to Plasmodium falciparum: from classical malaria resistance genes towards genome-wide association studies. Parasite Immunol 31(5):234–253.  https://doi.org/10.1111/j.1365-3024.2009.01106.x CrossRefPubMedGoogle Scholar
  62. Wang K, Li M, Hakonarson H (2010) ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res 38(16):e164.  https://doi.org/10.1093/nar/gkq603 CrossRefPubMedPubMedCentralGoogle Scholar
  63. Wang K, Xu R, Snider AJ, Schrandt J, Li Y, Bialkowska AB, Li M et al (2016) Alkaline ceramidase 3 deficiency aggravates colitis and colitis-associated tumorigenesis in mice by hyperactivating the innate immune system. Cell Death Dis 7(March):e2124.  https://doi.org/10.1038/cddis.2016.36 CrossRefPubMedPubMedCentralGoogle Scholar
  64. Watanabe K, Taskesen E, van Bochoven A, Posthuma D (2017) Functional mapping and annotation of genetic associations with FUMA. Nat Commun 8(1):1826.  https://doi.org/10.1038/s41467-017-01261-5 CrossRefPubMedPubMedCentralGoogle Scholar
  65. Westra H-J, Peters MJ, Esko T, Yaghootkar H, Schurmann C, Kettunen J, Christiansen MW et al (2013) Systematic identification of trans eQTLs as putative drivers of known disease associations. Nat Genet 45(10):1238–1243.  https://doi.org/10.1038/ng.2756 CrossRefPubMedPubMedCentralGoogle Scholar
  66. Willer CJ, Li Y (2010) METAL: fast and efficient meta-analysis of genomewide association scans. Bioinformatics (Oxford, England) 26(17):2190–2191.  https://doi.org/10.1093/bioinformatics/btq340 CrossRefGoogle Scholar
  67. Williams TN, Mwangi TW, Roberts DJ, Alexander ND, Weatherall DJ, Wambua S, Kortok M, Snow RW, Marsh K (2005) An immune basis for malaria protection by the sickle cell trait. PLoS Med 2(5):e128.  https://doi.org/10.1371/journal.pmed.0020128 CrossRefPubMedPubMedCentralGoogle Scholar
  68. Wilson JF, Erlandsson R (1998) Sexing of human and other primate DNA. Biol Chem 379(10):1287–1288PubMedGoogle Scholar
  69. World Health Organization (2018) WHO|World Malaria Report 2018Google Scholar
  70. Wu X, Gao H, Ke W, Giese RW, Zhu Z (2011) The homeobox transcription factor VentX controls human macrophage terminal differentiation and proinflammatory activation. J Clin Investig 121(7):2599–2613.  https://doi.org/10.1172/JCI45556 CrossRefPubMedGoogle Scholar
  71. Wu X, Gao H, Bleday R, Zhu Z (2014) Homeobox transcription factor VentX regulates differentiation and maturation of human dendritic cells. J Biol Chem 289(21):14633–14643.  https://doi.org/10.1074/jbc.M113.509158 CrossRefPubMedPubMedCentralGoogle Scholar
  72. Yang J, Lee SH, Goddard ME, Visscher PM (2011) GCTA: a tool for genome-wide complex trait analysis. Am J Hum Genet 88(1):76–82.  https://doi.org/10.1016/j.ajhg.2010.11.011 CrossRefPubMedPubMedCentralGoogle Scholar
  73. Zhang X, Guo A, Yu J, Possemato A, Chen Y, Zheng W, Polakiewicz RD et al (2007) Identification of STAT3 as a substrate of receptor protein tyrosine phosphatase T. Proc Natl Acad Sci USA 104(10):4060–4064.  https://doi.org/10.1073/pnas.0611665104 CrossRefPubMedGoogle Scholar
  74. Zhernakova DV, Deelen P, Vermaat M, van Iterson M, van Galen M, Arindrarto W, van’t Hof P et al (2017) Identification of context-dependent expression quantitative trait loci in whole blood. Nat Genet 49(1):139–145.  https://doi.org/10.1038/ng.3737 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Université de Paris, MERIT, IRDParisFrance
  2. 2.Centre National de Recherche en Génomique Humaine (CNRGH), Institut de Biologie François Jacob, CEA, Université Paris-SaclayEvryFrance
  3. 3.Centro de Investigación y Desarrollo en Inmunología y Enfermedades Infecciosas, Consejo Nacional de Investigaciones Científicas y TécnicasCórdobaArgentina
  4. 4.Facultad de Filosofía y Humanidades, Universidad Nacional de CórdobaCórdobaArgentina
  5. 5.Faculty of Medicine of Ribeirão PretoUniversity of São PauloSão PauloBrazil
  6. 6.Centre d’Etude et de Recherche sur le Paludisme Associé à la Grossesse et l’Enfance, Faculté des Sciences de la SantéCotonouBenin
  7. 7.Université Paris-Saclay, Centre de recherche en Epidémiologie et Santé des Populations, Institut National de la Santé et de la Recherche MédicaleVillejuifFrance

Personalised recommendations