Advertisement

MicroRNAs as modulators of longevity and the aging process

  • Holly E. Kinser
  • Zachary PincusEmail author
Review
Part of the following topical collections:
  1. Molecular Genetics of Aging and Longevity

Abstract

MicroRNAs (miRNAs) are short, non-coding RNAs that post-transcriptionally repress translation or induce mRNA degradation of target transcripts through sequence-specific binding. miRNAs target hundreds of transcripts to regulate diverse biological pathways and processes, including aging. Many microRNAs are differentially expressed during aging, generating interest in their use as aging biomarkers and roles as regulators of the aging process. In the invertebrates Caenorhabditis elegans and Drosophila, a number of miRNAs have been found to both positive and negatively modulate longevity through canonical aging pathways. Recent studies have also shown that miRNAs regulate age-associated processes and pathologies in a diverse array of mammalian tissues, including brain, heart, bone, and muscle. The review will present an overview of these studies, highlighting the role of individual miRNAs as biomarkers of aging and regulators of longevity and tissue-specific aging processes.

Notes

Acknowledgements

This work was supported by National Human Genome Institute Grant T32HG000045, National Institutes of Health Grant 1R01AG057748, and a Beckman Young Investigator award from the Arnold and Mabel Beckman Foundation.

Compliance with ethical standards

Conflict of interest

On behalf of all the authors, the corresponding author states that there is no conflict of interest.

References

  1. Aalto AP, Nicastro IA, Broughton JP et al (2018) Opposing roles of microRNA Argonautes during Caenorhabditis elegans aging. PLoS Genet 14:e1007379.  https://doi.org/10.1371/journal.pgen.1007379 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Ameling S, Kacprowski T, Chilukoti RK et al (2015) Associations of circulating plasma microRNAs with age, body mass index and sex in a population-based study. BMC Med Genomics 8:61.  https://doi.org/10.1186/s12920-015-0136-7 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Axtell MJ, Westholm JO, Lai EC (2011) Vive la différence: biogenesis and evolution of microRNAs in plants and animals. Genome Biol 12:221.  https://doi.org/10.1186/gb-2011-12-4-221 CrossRefPubMedPubMedCentralGoogle Scholar
  4. Bartke A, Brown-Borg H (2004) Life extension in the dwarf mouse. Curr Top Dev Biol 63:189–225.  https://doi.org/10.1016/S0070-2153(04)63006-7 CrossRefPubMedGoogle Scholar
  5. Bates DJ, Li N, Liang R et al (2010) MicroRNA regulation in Ames dwarf mouse liver may contribute to delayed aging. Aging Cell 9:1–18.  https://doi.org/10.1111/j.1474-9726.2009.00529.x CrossRefPubMedGoogle Scholar
  6. Beltrán-Sánchez H, Soneji S, Crimmins EM (2015) Past, present, and future of healthy life expectancy: figure 1. Cold Spring Harb Perspect Med 5:a025957.  https://doi.org/10.1101/cshperspect.a025957 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Boehm M, Slack F (2005) A developmental timing microRNA and its target regulate life span in C. elegans. Science 310:1954–1957.  https://doi.org/10.1126/science.1115596 CrossRefPubMedGoogle Scholar
  8. Boon RA, Iekushi K, Lechner S et al (2013) MicroRNA-34a regulates cardiac ageing and function. Nature 495:107–110.  https://doi.org/10.1038/nature11919 CrossRefPubMedGoogle Scholar
  9. Boskey AL, Imbert L (2017) Bone quality changes associated with aging and disease: a review. Ann N Y Acad Sci 1410:93–106.  https://doi.org/10.1111/nyas.13572 CrossRefPubMedPubMedCentralGoogle Scholar
  10. Boulias K, Horvitz HR (2012) The C. elegans microRNA mir-71 acts in neurons to promote germline-mediated longevity through regulation of DAF-16/FOXO. Cell Metab 15:439–450.  https://doi.org/10.1016/J.CMET.2012.02.014 CrossRefPubMedPubMedCentralGoogle Scholar
  11. Bushati N, Cohen SM (2007) MicroRNA functions. Annu Rev Cell Dev Biol 23:175–205.  https://doi.org/10.1146/annurev.cellbio.23.090506.123406 CrossRefPubMedGoogle Scholar
  12. Chawla G, Deosthale P, Childress S et al (2016) A let-7-to-miR-125 MicroRNA switch regulates neuronal integrity and lifespan in Drosophila. PLoS Genet 12:e1006247.  https://doi.org/10.1371/journal.pgen.1006247 CrossRefPubMedPubMedCentralGoogle Scholar
  13. Che H, Sun L-H, Guo F et al (2014) Expression of amyloid-associated miRNAs in both the forebrain cortex and hippocampus of middle-aged rat. Cell Physiol Biochem 33:11–22.  https://doi.org/10.1159/000356646 CrossRefPubMedGoogle Scholar
  14. Chen Y-W, Song S, Weng R et al (2014) Systematic study of Drosophila microRNA functions using a collection of targeted knockout mutations. Dev Cell 31:784–800.  https://doi.org/10.1016/j.devcel.2014.11.029 CrossRefPubMedGoogle Scholar
  15. Chen J, Zou Q, Lv D et al (2019) Comprehensive transcriptional profiling of porcine brain aging. Gene 693:1–9.  https://doi.org/10.1016/J.GENE.2019.01.019 CrossRefPubMedGoogle Scholar
  16. Crimmins EM (2015) Lifespan and healthspan: past, present, and promise. Gerontologist 55:901–911.  https://doi.org/10.1093/geront/gnv130 CrossRefPubMedPubMedCentralGoogle Scholar
  17. da Costa JP, Vitorino R, Silva GM et al (2016) A synopsis on aging-theories, mechanisms and future prospects. Ageing Res Rev 29:90–112.  https://doi.org/10.1016/j.arr.2016.06.005 CrossRefPubMedPubMedCentralGoogle Scholar
  18. Davis C, Dukes A, Drewry M et al (2017a) MicroRNA-183-5p increases with age in bone-derived extracellular vesicles, suppresses bone marrow stromal (stem) cell proliferation, and induces stem cell senescence. Tissue Eng Part A 23:1231–1240.  https://doi.org/10.1089/ten.TEA.2016.0525 CrossRefPubMedPubMedCentralGoogle Scholar
  19. Davis HM, Pacheco-Costa R, Atkinson EG et al (2017b) Disruption of the Cx43/miR21 pathway leads to osteocyte apoptosis and increased osteoclastogenesis with aging. Aging Cell 16:551–563.  https://doi.org/10.1111/acel.12586 CrossRefPubMedPubMedCentralGoogle Scholar
  20. de Lencastre A, Pincus Z, Zhou K et al (2010) MicroRNAs both promote and antagonize longevity in C. elegans. Curr Biol 20:2159–2168.  https://doi.org/10.1016/j.cub.2010.11.015 CrossRefPubMedPubMedCentralGoogle Scholar
  21. de Lucia C, Komici K, Borghetti G et al (2017) MicroRNA in cardiovascular aging and age-related cardiovascular diseases. Front Med 4:74.  https://doi.org/10.3389/fmed.2017.00074 CrossRefGoogle Scholar
  22. Dellago H, Bobbili MR, Grillari J (2017) MicroRNA-17-5p: at the crossroads of cancer and aging—a mini-review. Gerontology 63:20–28.  https://doi.org/10.1159/000447773 CrossRefPubMedGoogle Scholar
  23. Demontiero O, Vidal C, Duque G (2012) Aging and bone loss: new insights for the clinician. Ther Adv Musculoskelet Dis 4:61–76.  https://doi.org/10.1177/1759720X11430858 CrossRefPubMedPubMedCentralGoogle Scholar
  24. Drummond MJ, McCarthy JJ, Sinha M et al (2011) Aging and microRNA expression in human skeletal muscle: a microarray and bioinformatics analysis. Physiol Genomics 43:595–603.  https://doi.org/10.1152/physiolgenomics.00148.2010 CrossRefPubMedGoogle Scholar
  25. Du WW, Yang W, Fang L et al (2014) miR-17 extends mouse lifespan by inhibiting senescence signaling mediated by MKP7. Cell Death Dis 5:e1355.  https://doi.org/10.1038/cddis.2014.305 CrossRefPubMedPubMedCentralGoogle Scholar
  26. Du WW, Li X, Li T et al (2015) The microRNA miR-17-3p inhibits mouse cardiac fibroblast senescence by targeting Par4. J Cell Sci 128:293–304.  https://doi.org/10.1242/jcs.158360 CrossRefPubMedGoogle Scholar
  27. Duan L, Liu C, Hu J et al (2018) Epigenetic mechanisms in coronary artery disease: the current state and prospects. Trends Cardiovasc Med 28:311–319.  https://doi.org/10.1016/J.TCM.2017.12.012 CrossRefPubMedGoogle Scholar
  28. Elobeid A, Libard S, Leino M et al (2016) Altered Proteins in the Aging Brain. J Neuropathol Exp Neurol 75:316–325.  https://doi.org/10.1093/jnen/nlw002 CrossRefPubMedPubMedCentralGoogle Scholar
  29. Epstein FH, Wei JY (1992) Age and the cardiovascular system. N Engl J Med 327:1735–1739.  https://doi.org/10.1056/NEJM199212103272408 CrossRefGoogle Scholar
  30. Esslinger SM, Schwalb B, Helfer S et al (2013) Drosophila miR-277 controls branched-chain amino acid catabolism and affects lifespan. RNA Biol 10:1042–1056.  https://doi.org/10.4161/rna.24810 CrossRefPubMedPubMedCentralGoogle Scholar
  31. Feng Q, Zheng S, Zheng J (2018) The emerging role of microRNAs in bone remodeling and its therapeutic implications for osteoporosis. Biosci Rep.  https://doi.org/10.1042/bsr20180453 CrossRefPubMedPubMedCentralGoogle Scholar
  32. Fenn AM, Smith KM, Lovett-Racke AE et al (2013) Increased micro-RNA 29b in the aged brain correlates with the reduction of insulin-like growth factor-1 and fractalkine ligand. Neurobiol Aging 34:2748–2758.  https://doi.org/10.1016/j.neurobiolaging.2013.06.007 CrossRefPubMedPubMedCentralGoogle Scholar
  33. Finger F, Ottens F, Springhorn A et al (2019) Olfaction regulates organismal proteostasis and longevity via microRNA-dependent signalling. Nat Metab 1:350–359.  https://doi.org/10.1038/s42255-019-0033-z CrossRefGoogle Scholar
  34. Friedman DB, Johnson TE (1988) A mutation in the age-1 gene in Caenorhabditis elegans lengthens life and reduces hermaphrodite fertility. Genetics 118:75–86PubMedPubMedCentralGoogle Scholar
  35. Fuggle N, Shaw S, Dennison E, Cooper C (2017) Sarcopenia. Best Pract Res Clin Rheumatol 31:218–242.  https://doi.org/10.1016/j.berh.2017.11.007 CrossRefPubMedPubMedCentralGoogle Scholar
  36. Gendron CM, Pletcher SD (2017) MicroRNAs mir-184 and let-7 alter Drosophila metabolism and longevity. Aging Cell 16:1434–1438.  https://doi.org/10.1111/acel.12673 CrossRefPubMedPubMedCentralGoogle Scholar
  37. Gupta SK, Foinquinos A, Thum S et al (2016) Preclinical development of a microRNA-based therapy for elderly patients with myocardial infarction. J Am Coll Cardiol 68:1557–1571.  https://doi.org/10.1016/j.jacc.2016.07.739 CrossRefPubMedGoogle Scholar
  38. Gurha P, Wang T, Larimore AH et al (2013) MicroRNA-22 promotes heart failure through coordinate suppression of PPAR/ERR-nuclear hormone receptor transcription. PLoS One 8:e75882.  https://doi.org/10.1371/journal.pone.0075882 CrossRefPubMedPubMedCentralGoogle Scholar
  39. Hamrick MW, Herberg S, Arounleut P et al (2010) The adipokine leptin increases skeletal muscle mass and significantly alters skeletal muscle miRNA expression profile in aged mice. Biochem Biophys Res Commun 400:379–383.  https://doi.org/10.1016/j.bbrc.2010.08.079 CrossRefPubMedPubMedCentralGoogle Scholar
  40. Hanna J, Hossain GS, Kocerha J (2019) The potential for microRNA therapeutics and clinical research. Front Genet 10:478.  https://doi.org/10.3389/fgene.2019.00478 CrossRefPubMedPubMedCentralGoogle Scholar
  41. Hedden T, Gabrieli JDE (2004) Insights into the ageing mind: a view from cognitive neuroscience. Nat Rev Neurosci 5:87–96.  https://doi.org/10.1038/nrn1323 CrossRefPubMedGoogle Scholar
  42. Hooten NN, Fitzpatrick M, Wood WH et al (2013) Age-related changes in microRNA levels in serum. Aging (Albany NY) 5:725–740.  https://doi.org/10.18632/aging.100603 CrossRefGoogle Scholar
  43. Hsieh Y-W, Chang C, Chuang C-F (2012) The microRNA mir-71 inhibits calcium signaling by targeting the TIR-1/Sarm1 adaptor protein to control stochastic L/R neuronal asymmetry in C. elegans. PLoS Genet 8:e1002864.  https://doi.org/10.1371/journal.pgen.1002864 CrossRefPubMedPubMedCentralGoogle Scholar
  44. Hu Z, Klein JD, Mitch WE et al (2014) MicroRNA-29 induces cellular senescence in aging muscle through multiple signaling pathways. Aging (Albany NY) 6:160–175.  https://doi.org/10.18632/aging.100643 CrossRefPubMedCentralGoogle Scholar
  45. Hu C-H, Sui B-D, Du F-Y et al (2017) miR-21 deficiency inhibits osteoclast function and prevents bone loss in mice. Sci Rep 7:43191.  https://doi.org/10.1038/srep43191 CrossRefPubMedPubMedCentralGoogle Scholar
  46. Huang Y, Qi Y, Du J-Q, Zhang D (2014) MicroRNA-34a regulates cardiac fibrosis after myocardial infarction by targeting Smad4. Expert Opin Ther Targets 18:1–11.  https://doi.org/10.1517/14728222.2014.961424 CrossRefGoogle Scholar
  47. Ibáñez-Ventoso C, Vora M, Driscoll M (2008) Sequence relationships among C. elegans, D. melanogaster and human microRNAs highlight the extensive conservation of microRNAs in biology. PLoS One 3:e2818.  https://doi.org/10.1371/journal.pone.0002818 CrossRefPubMedPubMedCentralGoogle Scholar
  48. Inukai S, Slack F (2013) MicroRNAs and the genetic network in aging. J Mol Biol 425:3601–3608.  https://doi.org/10.1016/j.jmb.2013.01.023 CrossRefPubMedPubMedCentralGoogle Scholar
  49. Inukai S, de Lencastre A, Turner M, Slack F (2012) Novel microRNAs differentially expressed during aging in the mouse brain. PLoS One 7:e40028.  https://doi.org/10.1371/journal.pone.0040028 CrossRefPubMedPubMedCentralGoogle Scholar
  50. Isik M, Blackwell TK, Berezikov E et al (2016) MicroRNA mir-34 provides robustness to environmental stress response via the DAF-16 network in C. elegans. Sci Rep 6:36766.  https://doi.org/10.1038/srep36766 CrossRefPubMedPubMedCentralGoogle Scholar
  51. Jazbutyte V, Fiedler J, Kneitz S et al (2013) MicroRNA-22 increases senescence and activates cardiac fibroblasts in the aging heart. Age (Dordr) 35:747–762.  https://doi.org/10.1007/s11357-012-9407-9 CrossRefGoogle Scholar
  52. Jung HJ, Suh Y (2014) Circulating miRNAs in ageing and ageing-related diseases. J Genet Genomics 41(9):465–472.  https://doi.org/10.1016/j.jgg.2014.07.003 CrossRefPubMedPubMedCentralGoogle Scholar
  53. Jung HJ, Lee K-P, Milholland B et al (2017) Comprehensive miRNA profiling of skeletal muscle and serum in induced and normal mouse muscle atrophy during aging. J Gerontol A Biol Sci Med Sci 72:1483–1491.  https://doi.org/10.1093/gerona/glx025 CrossRefPubMedPubMedCentralGoogle Scholar
  54. Kato M, Slack FJ (2013) Ageing and the small, non-coding RNA world. Ageing Res Rev 12:429–435.  https://doi.org/10.1016/j.arr.2012.03.012 CrossRefPubMedGoogle Scholar
  55. Ke K, Sul O-J, Rajasekaran M, Choi H-S (2015) MicroRNA-183 increases osteoclastogenesis by repressing heme oxygenase-1. Bone 81:237–246.  https://doi.org/10.1016/J.BONE.2015.07.006 CrossRefPubMedGoogle Scholar
  56. Kennerdell JR, Liu N, Bonini NM (2018) MiR-34 inhibits polycomb repressive complex 2 to modulate chaperone expression and promote healthy brain aging. Nat Commun 9:4188.  https://doi.org/10.1038/s41467-018-06592-5 CrossRefPubMedPubMedCentralGoogle Scholar
  57. Kenyon CJ (2010) The genetics of ageing. Nature 464:504–512.  https://doi.org/10.1038/nature08980 CrossRefPubMedGoogle Scholar
  58. Kenyon C, Chang J, Gensch E et al (1993) A C. elegans mutant that lives twice as long as wild type. Nature 366:461–464.  https://doi.org/10.1038/366461a0 CrossRefPubMedGoogle Scholar
  59. Khan SS, Singer BD, Vaughan DE (2017) Molecular and physiological manifestations and measurement of aging in humans. Aging Cell 16:624–633.  https://doi.org/10.1111/acel.12601 CrossRefPubMedPubMedCentralGoogle Scholar
  60. Khanna A, Muthusamy S, Liang R et al (2011) Gain of survival signaling by down-regulation of three key miRNAs in brain of calorie-restricted mice. Aging (Albany NY) 3:223–236.  https://doi.org/10.18632/aging.100276 CrossRefGoogle Scholar
  61. Kiezun A, Artzi S, Modai S et al (2012) miRviewer: a multispecies microRNA homologous viewer. BMC Res Notes 5:92.  https://doi.org/10.1186/1756-0500-5-92 CrossRefPubMedPubMedCentralGoogle Scholar
  62. Kim JY, Park Y-K, Lee K-P et al (2014) Genome-wide profiling of the microRNA-mRNA regulatory network in skeletal muscle with aging. Aging (Albany NY) 6:524–544.  https://doi.org/10.18632/aging.100677 CrossRefPubMedCentralGoogle Scholar
  63. Kim J, Yoon H, Chung D-E et al (2016) miR-186 is decreased in aged brain and suppresses BACE1 expression. J Neurochem 137:436–445.  https://doi.org/10.1111/jnc.13507 CrossRefPubMedPubMedCentralGoogle Scholar
  64. Kozomara A, Griffiths-Jones S (2014) miRBase: annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Res 42:D68–D73.  https://doi.org/10.1093/nar/gkt1181 CrossRefPubMedGoogle Scholar
  65. Kumar S, Vijayan M, Bhatti JS, Reddy PH (2017) MicroRNAs as peripheral biomarkers in aging and age-related diseases. Prog Mol Biol Transl Sci 146:47–94.  https://doi.org/10.1016/BS.PMBTS.2016.12.013 CrossRefPubMedGoogle Scholar
  66. Lai P, Song Q, Yang C et al (2016) Loss of Rictor with aging in osteoblasts promotes age-related bone loss. Cell Death Dis 7:e2408.  https://doi.org/10.1038/cddis.2016.249 CrossRefPubMedPubMedCentralGoogle Scholar
  67. Lee K-P, Shin YJ, Panda AC et al (2015) miR-431 promotes differentiation and regeneration of old skeletal muscle by targeting Smad4. Genes Dev 29:1605–1617.  https://doi.org/10.1101/gad.263574.115 CrossRefPubMedPubMedCentralGoogle Scholar
  68. Leggio L, Vivarelli S, L’Episcopo F et al (2017) microRNAs in parkinson’s disease: from pathogenesis to novel diagnostic and therapeutic approaches. Int J Mol Sci.  https://doi.org/10.3390/ijms18122698 CrossRefPubMedPubMedCentralGoogle Scholar
  69. Lewis BP, Burge CB, Bartel DP (2005) Conserved seed pairing, often flanked by Adenosines, indicates that thousands of human genes are microRNA targets. Cell 120:15–20.  https://doi.org/10.1016/J.CELL.2004.12.035 CrossRefGoogle Scholar
  70. Li Z, Rana TM (2014) Therapeutic targeting of microRNAs: current status and future challenges. Nat Rev Drug Discov 13:622–638.  https://doi.org/10.1038/nrd4359 CrossRefPubMedGoogle Scholar
  71. Li N, Bates DJ, An J et al (2011a) Up-regulation of key microRNAs, and inverse down-regulation of their predicted oxidative phosphorylation target genes, during aging in mouse brain. Neurobiol Aging 32:944–955.  https://doi.org/10.1016/J.NEUROBIOLAGING.2009.04.020 CrossRefPubMedGoogle Scholar
  72. Li X, Khanna A, Li N, Wang E (2011b) Circulatory miR34a as an RNA-based, noninvasive biomarker for brain aging. Aging (Albany NY) 3:985–1002.  https://doi.org/10.18632/aging.100371 CrossRefGoogle Scholar
  73. Li S-H, Guo J, Wu J et al (2013) miR-17 targets tissue inhibitor of metalloproteinase 1 and 2 to modulate cardiac matrix remodeling. FASEB J 27:4254–4265.  https://doi.org/10.1096/fj.13-231688 CrossRefPubMedGoogle Scholar
  74. Li C-J, Cheng P, Liang M-K et al (2015) MicroRNA-188 regulates age-related switch between osteoblast and adipocyte differentiation. J Clin Invest 125:1509–1522.  https://doi.org/10.1172/JCI77716 CrossRefPubMedPubMedCentralGoogle Scholar
  75. Li D, Liu J, Guo B et al (2016) Osteoclast-derived exosomal miR-214-3p inhibits osteoblastic bone formation. Nat Commun 7:10872.  https://doi.org/10.1038/ncomms10872 CrossRefPubMedPubMedCentralGoogle Scholar
  76. Liang R, Khanna A, Muthusamy S et al (2011) Post-transcriptional regulation of IGF1R by key microRNAs in long-lived mutant mice. Aging Cell 10:1080–1088.  https://doi.org/10.1111/j.1474-9726.2011.00751.x CrossRefPubMedPubMedCentralGoogle Scholar
  77. Liu N, Landreh M, Cao K et al (2012) The microRNA miR-34 modulates ageing and neurodegeneration in Drosophila. Nature 482:519–523.  https://doi.org/10.1038/nature10810 CrossRefPubMedPubMedCentralGoogle Scholar
  78. Machida T, Tomofuji T, Ekuni D et al (2015) MicroRNAs in salivary exosome as potential biomarkers of aging. Int J Mol Sci 16:21294–21309.  https://doi.org/10.3390/ijms160921294 CrossRefPubMedPubMedCentralGoogle Scholar
  79. Marty E, Liu Y, Samuel A et al (2017) A review of sarcopenia: enhancing awareness of an increasingly prevalent disease. Bone 105:276–286.  https://doi.org/10.1016/J.BONE.2017.09.008 CrossRefPubMedGoogle Scholar
  80. Meder B, Backes C, Haas J et al (2014) Influence of the confounding factors age and sex on microRNA profiles from peripheral blood. Clin Chem 60:1200–1208.  https://doi.org/10.1373/clinchem.2014.224238 CrossRefPubMedGoogle Scholar
  81. Mercken EM, Majounie E, Ding J et al (2013) Age-associated miRNA alterations in skeletal muscle from rhesus monkeys reversed by caloric restriction. Aging (Albany NY) 5:692–703.  https://doi.org/10.18632/aging.100598 CrossRefGoogle Scholar
  82. Moerman EJ, Teng K, Lipschitz DA, Lecka-Czernik B (2004) Aging activates adipogenic and suppresses osteogenic programs in mesenchymal marrow stroma/stem cells: the role of PPAR-γ2 transcription factor and TGF-β/BMP signaling pathways. Aging Cell 3:379–389.  https://doi.org/10.1111/j.1474-9728.2004.00127.x CrossRefPubMedPubMedCentralGoogle Scholar
  83. Murray-Stewart TR, Woster PM, Casero RA (2016) Targeting polyamine metabolism for cancer therapy and prevention. Biochem J 473:2937–2953.  https://doi.org/10.1042/BCJ20160383 CrossRefPubMedPubMedCentralGoogle Scholar
  84. North BJ, Sinclair DA (2012) The intersection between aging and cardiovascular disease. Circ Res 110:1097–1108.  https://doi.org/10.1161/CIRCRESAHA.111.246876 CrossRefPubMedPubMedCentralGoogle Scholar
  85. Olivieri F, Bonafè M, Spazzafumo L et al (2014) Age- and glycemia-related miR-126-3p levels in plasma and endothelial cells. Aging (Albany NY) 6:771–786.  https://doi.org/10.18632/aging.100693 CrossRefGoogle Scholar
  86. Pardo PS, Hajira A, Boriek AM, Mohamed JS (2017) MicroRNA-434-3p regulates age-related apoptosis through eIF5A1 in the skeletal muscle. Aging (Albany NY) 9:1012–1029.  https://doi.org/10.18632/aging.101207 CrossRefGoogle Scholar
  87. Peng Y, Croce CM (2016) The role of microRNAs in human cancer. Signal Transduct Target Ther 1:15004.  https://doi.org/10.1038/sigtrans.2015.4 CrossRefPubMedPubMedCentralGoogle Scholar
  88. Persengiev SP, Kondova II, Bontrop RE (2012) The impact of MicroRNAs on brain aging and neurodegeneration. Curr Gerontol Geriatr Res 2012:359369.  https://doi.org/10.1155/2012/359369 CrossRefPubMedPubMedCentralGoogle Scholar
  89. Pincus Z, Smith-Vikos T, Slack FJ (2011) MicroRNA predictors of longevity in Caenorhabditis elegans. PLoS Genet 7:e1002306.  https://doi.org/10.1371/journal.pgen.1002306 CrossRefPubMedPubMedCentralGoogle Scholar
  90. Plotkin LI, Bellido T (2016) Osteocytic signalling pathways as therapeutic targets for bone fragility. Nat Rev Endocrinol 12:593–605.  https://doi.org/10.1038/nrendo.2016.71 CrossRefPubMedPubMedCentralGoogle Scholar
  91. Quinlan S, Kenny A, Medina M et al (2017) MicroRNAs in neurodegenerative diseases. Int Rev Cell Mol Biol 334:309–343.  https://doi.org/10.1016/BS.IRCMB.2017.04.002 CrossRefPubMedGoogle Scholar
  92. Rachner TD, Khosla S, Hofbauer LC (2011) Osteoporosis: now and the future. Lancet (Lond, Engl) 377:1276–1287.  https://doi.org/10.1016/S0140-6736(10)62349-5 CrossRefGoogle Scholar
  93. Ramanujam D, Sassi Y, Laggerbauer B, Engelhardt S (2016) Viral vector-based targeting of miR-21 in cardiac nonmyocyte cells reduces pathologic remodeling of the heart. Mol Ther 24:1939–1948.  https://doi.org/10.1038/mt.2016.166 CrossRefPubMedPubMedCentralGoogle Scholar
  94. Redshaw Z, Sweetman D, Loughna PT (2014) The effects of age upon the expression of three miRNAs in muscle stem cells isolated from two different porcine skeletal muscles. Differentiation 88:117–123.  https://doi.org/10.1016/J.DIFF.2014.12.001 CrossRefPubMedGoogle Scholar
  95. Ripa R, Dolfi L, Terrigno M et al (2017) MicroRNA miR-29 controls a compensatory response to limit neuronal iron accumulation during adult life and aging. BMC Biol 15:9.  https://doi.org/10.1186/s12915-017-0354-x CrossRefPubMedPubMedCentralGoogle Scholar
  96. Rivas DA, Lessard SJ, Rice NP et al (2014) Diminished skeletal muscle microRNA expression with aging is associated with attenuated muscle plasticity and inhibition of IGF-1 signaling. FASEB J 28:4133–4147.  https://doi.org/10.1096/fj.14-254490 CrossRefPubMedPubMedCentralGoogle Scholar
  97. Rupaimoole R, Slack FJ (2017) MicroRNA therapeutics: towards a new era for the management of cancer and other diseases. Nat Rev Drug Discov 16:203–222.  https://doi.org/10.1038/nrd.2016.246 CrossRefPubMedGoogle Scholar
  98. Sawada S, Akimoto T, Takahashi M et al (2014) Effect of aging and sex on circulating microRNAs in humans. Adv Aging Res 03:152–159.  https://doi.org/10.4236/aar.2014.32023 CrossRefGoogle Scholar
  99. Shao H, Yang L, Wang L et al (2018) MicroRNA-34a protects myocardial cells against ischemia–reperfusion injury through inhibiting autophagy via regulating TNFα expression. Biochem Cell Biol 96:349–354.  https://doi.org/10.1139/bcb-2016-0158 CrossRefPubMedGoogle Scholar
  100. Shih H, Lee B, Lee RJ, Boyle AJ (2011) The aging heart and post-infarction left ventricular remodeling. J Am Coll Cardiol 57:9–17.  https://doi.org/10.1016/J.JACC.2010.08.623 CrossRefPubMedGoogle Scholar
  101. Simon AF, Shih C, Mack A, Benzer S (2003) Steroid control of longevity in Drosophila melanogaster. Science (80−) 299:1407–1410.  https://doi.org/10.1126/science.1080539 CrossRefGoogle Scholar
  102. Smith-Vikos T, Slack FJ (2012) MicroRNAs and their roles in aging. J Cell Sci 125:7–17.  https://doi.org/10.1242/jcs.099200 CrossRefPubMedPubMedCentralGoogle Scholar
  103. Smith-Vikos T, de Lencastre A, Inukai S et al (2014) MicroRNAs mediate dietary-restriction-induced longevity through PHA-4/FOXA and SKN-1/Nrf transcription factors. Curr Biol 24:2238–2246.  https://doi.org/10.1016/j.cub.2014.08.013 CrossRefPubMedPubMedCentralGoogle Scholar
  104. Smith-Vikos T, Liu Z, Parsons C et al (2016) A serum miRNA profile of human longevity: findings from the Baltimore Longitudinal Study of Aging (BLSA). Aging (Albany NY) 8:2971–2987.  https://doi.org/10.18632/aging.101106 CrossRefGoogle Scholar
  105. Soriano-Arroquia A, House L, Tregilgas L et al (2016) The functional consequences of age-related changes in microRNA expression in skeletal muscle. Biogerontology 17:641–654.  https://doi.org/10.1007/s10522-016-9638-8 CrossRefPubMedPubMedCentralGoogle Scholar
  106. Sowell ER, Thompson PM, Toga AW (2004) Mapping changes in the human cortex throughout the span of life. Neurosci 10:372–392.  https://doi.org/10.1177/1073858404263960 CrossRefGoogle Scholar
  107. Strait JB, Lakatta EG (2012) Aging-associated cardiovascular changes and their relationship to heart failure. Heart Fail Clin 8:143–164.  https://doi.org/10.1016/j.hfc.2011.08.011 CrossRefPubMedPubMedCentralGoogle Scholar
  108. Sun W, Zhao C, Li Y et al (2016) Osteoclast-derived microRNA-containing exosomes selectively inhibit osteoblast activity. Cell Discov 2:16015.  https://doi.org/10.1038/celldisc.2016.15 CrossRefPubMedPubMedCentralGoogle Scholar
  109. Takeda T, Tanabe H (2016) Lifespan and reproduction in brain-specific miR-29-knockdown mouse. Biochem Biophys Res Commun 471:454–458.  https://doi.org/10.1016/j.bbrc.2016.02.055 CrossRefPubMedGoogle Scholar
  110. Ueda M, Sato T, Ohkawa Y, Inoue YH (2018) Identification of miR-305, a microRNA that promotes aging, and its target mRNAs in Drosophila. Genes Cells 23:80–93.  https://doi.org/10.1111/gtc.12555 CrossRefPubMedGoogle Scholar
  111. Ugalde AP, Ramsay AJ, de la Rosa J et al (2011) Aging and chronic DNA damage response activate a regulatory pathway involving miR-29 and p53. EMBO J 30:2219–2232.  https://doi.org/10.1038/emboj.2011.124 CrossRefPubMedPubMedCentralGoogle Scholar
  112. Van Aelst LNL, Voss S, Carai P et al (2015) Osteoglycin prevents cardiac dilatation and dysfunction after myocardial infarction through infarct collagen strengthening. Circ Res 116:425–436.  https://doi.org/10.1161/CIRCRESAHA.116.304599 CrossRefPubMedGoogle Scholar
  113. van Almen GC, Verhesen W, van Leeuwen REW et al (2011) MicroRNA-18 and microRNA-19 regulate CTGF and TSP-1 expression in age-related heart failure. Aging Cell 10:769–779.  https://doi.org/10.1111/j.1474-9726.2011.00714.x CrossRefPubMedPubMedCentralGoogle Scholar
  114. Verjans R, van Bilsen M, Schroen B (2017) MiRNA deregulation in cardiac aging and associated disorders. Int Rev Cell Mol Biol 334:207–263.  https://doi.org/10.1016/BS.IRCMB.2017.03.004 CrossRefPubMedGoogle Scholar
  115. Verma P, Augustine GJ, Ammar M-R et al (2015) A neuroprotective role for microRNA miR-1000 mediated by limiting glutamate excitotoxicity. Nat Neurosci 18:379–385.  https://doi.org/10.1038/nn.3935 CrossRefPubMedGoogle Scholar
  116. Villar AV, García R, Merino D et al (2013) Myocardial and circulating levels of microRNA-21 reflect left ventricular fibrosis in aortic stenosis patients. Int J Cardiol 167:2875–2881.  https://doi.org/10.1016/J.IJCARD.2012.07.021 CrossRefPubMedGoogle Scholar
  117. Vilmos P, Bujna A, Szuperák M et al (2013) Viability, longevity, and egg production of Drosophila melanogaster are regulated by the miR-282 microRNA. Genetics 195:469–480.  https://doi.org/10.1534/genetics.113.153585 CrossRefPubMedPubMedCentralGoogle Scholar
  118. Wang X, Guo B, Li Q et al (2013) miR-214 targets ATF4 to inhibit bone formation. Nat Med 19:93–100.  https://doi.org/10.1038/nm.3026 CrossRefPubMedGoogle Scholar
  119. Wang M, Qin L, Tang B (2019) MicroRNAs in Alzheimer’s disease. Front Genet 10:153.  https://doi.org/10.3389/fgene.2019.00153 CrossRefPubMedPubMedCentralGoogle Scholar
  120. Weber JA, Baxter DH, Zhang S et al (2010) The microRNA spectrum in 12 body fluids. Clin Chem 56:1733–1741.  https://doi.org/10.1373/clinchem.2010.147405 CrossRefPubMedPubMedCentralGoogle Scholar
  121. Weilner S, Schraml E, Wieser M et al (2016) Secreted microvesicular miR-31 inhibits osteogenic differentiation of mesenchymal stem cells. Aging Cell 15:744–754.  https://doi.org/10.1111/acel.12484 CrossRefPubMedPubMedCentralGoogle Scholar
  122. Wu S, Kim T-K, Wu X et al (2016) Circulating microRNAs and life expectancy among identical twins. Ann Hum Genet 80:247–256.  https://doi.org/10.1111/ahg.12160 CrossRefPubMedPubMedCentralGoogle Scholar
  123. Yang J, Chen D, He Y et al (2013a) MiR-34 modulates Caenorhabditis elegans lifespan via repressing the autophagy gene atg9. Age (Omaha) 35:11–22.  https://doi.org/10.1007/s11357-011-9324-3 CrossRefGoogle Scholar
  124. Yang N, Wang G, Hu C et al (2013b) Tumor necrosis factor α suppresses the mesenchymal stem cell osteogenesis promoter miR-21 in estrogen deficiency–induced osteoporosis. J Bone Miner Res 28:559–573.  https://doi.org/10.1002/jbmr.1798 CrossRefPubMedGoogle Scholar
  125. Yang Y, Cheng H-W, Qiu Y et al (2015) MicroRNA-34a plays a key role in cardiac repair and regeneration following myocardial infarction. Circ Res 117:450–459.  https://doi.org/10.1161/CIRCRESAHA.117.305962 CrossRefPubMedPubMedCentralGoogle Scholar
  126. Yin L, Sun Y, Wu J et al (2015) Discovering novel microRNAs and age-related nonlinear changes in rat brains using deep sequencing. Neurobiol Aging 36:1037–1044.  https://doi.org/10.1016/J.NEUROBIOLAGING.2014.11.001 CrossRefPubMedGoogle Scholar
  127. Yuan J, Chen H, Ge D et al (2017) Mir-21 promotes cardiac fibrosis after myocardial infarction via targeting Smad7. Cell Physiol Biochem 42:2207–2219.  https://doi.org/10.1159/000479995 CrossRefPubMedGoogle Scholar
  128. Zacharewicz E, Della Gatta P, Reynolds J et al (2014) Identification of microRNAs linked to regulators of muscle protein synthesis and regeneration in young and old skeletal muscle. PLoS One 9:e114009.  https://doi.org/10.1371/journal.pone.0114009 CrossRefPubMedPubMedCentralGoogle Scholar
  129. Zhang X, Zabinsky R, Teng Y et al (2011) MicroRNAs play critical roles in the survival and recovery of Caenorhabditis elegans from starvation-induced L1 diapause. Proc Natl Acad Sci USA 108:17997–18002.  https://doi.org/10.1073/pnas.1105982108 CrossRefPubMedGoogle Scholar
  130. Zhang X, Azhar G, Wei JY (2012) The expression of microRNA and microRNA clusters in the aging heart. PLoS One 7:e34688.  https://doi.org/10.1371/journal.pone.0034688 CrossRefPubMedPubMedCentralGoogle Scholar
  131. Zhang H, Yang H, Zhang C et al (2015) Investigation of microRNA expression in human serum during the aging process. J Gerontol Ser A 70:102–109.  https://doi.org/10.1093/gerona/glu145 CrossRefGoogle Scholar
  132. Zhang Y, Liu Y-J, Liu T et al (2016) Plasma microRNA-21 is a potential diagnostic biomarker of acute myocardial infarction. Eur Rev Med Pharmacol Sci 20:323–329PubMedGoogle Scholar
  133. Zhao C, Sun W, Zhang P et al (2015a) miR-214 promotes osteoclastogenesis by targeting Pten/PI3 k/Akt pathway. RNA Biol 12:343–353.  https://doi.org/10.1080/15476286.2015.1017205 CrossRefPubMedPubMedCentralGoogle Scholar
  134. Zhao W, Dong Y, Wu C et al (2015b) MiR-21 overexpression improves osteoporosis by targeting RECK. Mol Cell Biochem 405:125–133.  https://doi.org/10.1007/s11010-015-2404-4 CrossRefPubMedGoogle Scholar
  135. Zhou X, Xu H, Liu Z et al (2018) miR-21 promotes cardiac fibroblast-to-myofibroblast transformation and myocardial fibrosis by targeting Jagged1. J Cell Mol Med 22:3816–3824.  https://doi.org/10.1111/jcmm.13654 CrossRefPubMedCentralGoogle Scholar
  136. Zovoilis A, Agbemenyah HY, Agis-Balboa RC et al (2011) microRNA-34c is a novel target to treat dementias. EMBO J 30:4299–4308.  https://doi.org/10.1038/emboj.2011.327 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Biomedical EngineeringWashington University in St. LouisSt. LouisUSA
  2. 2.Department of Developmental Biology and Department of GeneticsWashington University in St. LouisSt. LouisUSA

Personalised recommendations