Advertisement

Genetics of anophthalmia and microphthalmia. Part 1: Non-syndromic anophthalmia/microphthalmia

  • J. Plaisancié
  • F. Ceroni
  • R. Holt
  • C. Zazo Seco
  • P. Calvas
  • N. Chassaing
  • Nicola K. RaggeEmail author
Review
Part of the following topical collections:
  1. Eye Genetics

Abstract

Eye formation is the result of coordinated induction and differentiation processes during embryogenesis. Disruption of any one of these events has the potential to cause ocular growth and structural defects, such as anophthalmia and microphthalmia (A/M). A/M can be isolated or occur with systemic anomalies, when they may form part of a recognizable syndrome. Their etiology includes genetic and environmental factors; several hundred genes involved in ocular development have been identified in humans or animal models. In humans, around 30 genes have been repeatedly implicated in A/M families, although many other genes have been described in single cases or families, and some genetic syndromes include eye anomalies occasionally as part of a wider phenotype. As a result of this broad genetic heterogeneity, with one or two notable exceptions, each gene explains only a small percentage of cases. Given the overlapping phenotypes, these genes can be most efficiently tested on panels or by whole exome/genome sequencing for the purposes of molecular diagnosis. However, despite whole exome/genome testing more than half of patients currently remain without a molecular diagnosis. The proportion of undiagnosed cases is even higher in those individuals with unilateral or milder phenotypes. Furthermore, even when a strong gene candidate is available for a patient, issues of incomplete penetrance and germinal mosaicism make diagnosis and genetic counseling challenging. In this review, we present the main genes implicated in non-syndromic human A/M phenotypes and, for practical purposes, classify them according to the most frequent or predominant phenotype each is associated with. Our intention is that this will allow clinicians to rank and prioritize their molecular analyses and interpretations according to the phenotypes of their patients.

Notes

Acknowledgements

We would like to thank the patients and their families for their participation. We gratefully acknowledge Dr Dorine Bax for assisting with the coordination of the UK projects. Our work is supported by funding from Baillie Gifford, Microphthalmia, Anophthalmia, Coloboma Support (MACS) (http://www.macs.org.uk), Oxford Brookes University Central Research Fund, Fondation Maladies Rares, Fondation de France (Berthe Fouassier), Retina France, Rares Diseases Cohorts (RaDiCo) program funded by the French National Research Agency under the specific program “Investments for the Future” (Cohort grant agreement ANR-10-COHO-0003).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Informed consent

Informed consent was obtained from all relevant subjects included in this paper. Patients shown in this review article were recruited as part of a national ‘Genetics of Eye and Brain anomalies’ study, approved by the Cambridge East Ethics Committee (04/Q0104/129). Additional informed consent for all individuals for whom identifying information is included in this article.

References

  1. Abouzeid H, Youssef MA, Bayoumi N, ElShakankiri N, Marzouk I, Hauser P, Schorderet DF (2012) RAX and anophthalmia in humans: evidence of brain anomalies. Mol Vis 18:1449–1456PubMedPubMedCentralGoogle Scholar
  2. Abouzeid H, Favez T, Schmid A, Agosti C, Youssef M, Marzouk I, El Shakankiry N, Bayoumi N, Munier FL, Schorderet DF (2014) Mutations in ALDH1A3 represent a frequent cause of microphthalmia/anophthalmia in consanguineous families. Hum Mutat 35:949–953.  https://doi.org/10.1002/humu.22580 CrossRefPubMedGoogle Scholar
  3. Aijaz S, Clark BJ, Williamson K, van Heyningen V, Morrison D, Fitzpatrick D, Collin R, Ragge N, Christoforou A, Brown A, Hanson I (2004) Absence of SIX6 mutations in microphthalmia, anophthalmia, and coloboma. Investig Ophthalmol Vis Sci 45:3871–3876.  https://doi.org/10.1167/iovs.04-0641 CrossRefGoogle Scholar
  4. Akizu N, Shembesh NM, Ben-Omran T, Bastaki L, Al-Tawari A, Zaki MS, Koul R, Spencer E, Rosti RO, Scott E, Nickerson E, Gabriel S, da Gente G, Li J, Deardorff MA, Conlin LK, Horton MA, Zackai EH, Sherr EH, Gleeson JG (2013) Whole-exome sequencing identifies mutated c12orf57 in recessive corpus callosum hypoplasia. Am J Hum Genet 92:392–400CrossRefPubMedPubMedCentralGoogle Scholar
  5. Alabdullatif MA, Al Dhaibani MA, Khassawneh MY, El-Hattab AW (2017) Chromosomal microarray in a highly consanguineous population: diagnostic yield, utility of regions of homozygosity, and novel mutations. Clin Genet 91:616–622.  https://doi.org/10.1111/cge.12872 CrossRefPubMedGoogle Scholar
  6. Aldahmesh MA, Khan AO, Mohamed J, Alkuraya FS (2011a) Novel recessive BFSP2 and PITX3 mutations: insights into mutational mechanisms from consanguineous populations. Genet Med 13:978–981.  https://doi.org/10.1097/GIM.0b013e31822623d5 CrossRefPubMedGoogle Scholar
  7. Aldahmesh MA, Nowilaty SR, Alzahrani F, Al-Ebdi L, Mohamed JY, Rajab M, Khan AO, Alkuraya FS (2011b) Posterior microphthalmos as a genetically heterogeneous condition that can be allelic to nanophthalmos. Arch Ophthalmol 129:805–807.  https://doi.org/10.1001/archophthalmol.2011.129 CrossRefPubMedGoogle Scholar
  8. Aldahmesh MA, Mohammed JY, Al-Hazzaa S, Alkuraya FS (2012) Homozygous null mutation in ODZ3 causes microphthalmia in humans. Genet Med 14:900–904.  https://doi.org/10.1038/gim.2012.71 CrossRefPubMedGoogle Scholar
  9. Aldahmesh MA, Khan AO, Hijazi H, Alkuraya FS (2013a) Homozygous truncation of SIX6 causes complex microphthalmia in humans. Clin Genet 84:198–199CrossRefPubMedGoogle Scholar
  10. Aldahmesh MA, Khan AO, Hijazi H, Alkuraya FS (2013b) Mutations in ALDH1A3 cause microphthalmia. Clin Genet 84:128–131CrossRefPubMedGoogle Scholar
  11. Ali M, Buentello-Volante B, McKibbin M, Rocha-Medina JA, Fernandez-Fuentes N, Koga-Nakamura W, Ashiq A, Khan K, Booth AP, Williams G, Raashid Y, Jafri H, Rice A, Inglehearn CF, Zenteno JC (2010) Homozygous FOXE3 mutations cause non-syndromic, bilateral, total sclerocornea, aphakia, microphthalmia and optic disc coloboma. Mol Vis 16:1162–1168PubMedPubMedCentralGoogle Scholar
  12. Alrakaf L, Al-Owain MA, Busehail M, Alotaibi MA, Monies D, Aldhalaan HM, Alhashem A, Al-Hassnan ZN, Rahbeeni ZA, Murshedi FA, Ani NA, Al-Maawali A, Ibrahim NA, Abdulwahab FM, Alsagob M, Hashem MO, Ramadan W, Abouelhoda M, Meyer BF, Kaya N, Maddirevula S, Alkuraya FS (2018) Further delineation of Temtamy syndrome of corpus callosum and ocular abnormalities. Am J Med Genet A 176:715–721.  https://doi.org/10.1002/ajmg.a.38615 CrossRefPubMedGoogle Scholar
  13. Ammar THA, Ismail S, Mansour OAA, El-Shafey MM, Doghish AS, Kamal AM, Abdel-Salam GMH (2017) Genetic analysis of SOX2 and VSX2 genes in 27 Egyptian families with anophthalmia and microphthalmia. Ophthalmic Genet 38:498–500.  https://doi.org/10.1080/13816810.2017.1279184 CrossRefPubMedGoogle Scholar
  14. Anand D, Agrawal SA, Slavotinek A, Lachke SA (2018) Mutation update of transcription factor genes FOXE3, HSF4, MAF, and PITX3 causing cataracts and other developmental ocular defects. Hum Mutat 39:471–494.  https://doi.org/10.1002/humu.23395 CrossRefPubMedGoogle Scholar
  15. Anjum I, Eiberg H, Baig SM, Tommerup N, Hansen L (2010) A mutation in the FOXE3 gene causes congenital primary aphakia in an autosomal recessive consanguineous Pakistani family. Mol Vis 16:549–555PubMedPubMedCentralGoogle Scholar
  16. Ansari M, Rainger J, Hanson IM, Williamson KA, Sharkey F, Harewood L, Sandilands A, Clayton-Smith J, Dollfus H, Bitoun P, Meire F, Fantes J, Franco B, Lorenz B, Taylor DS, Stewart F, Willoughby CE, McEntagart M, Khaw PT, Clericuzio C, Van Maldergem L, Williams D, Newbury-Ecob R, Traboulsi EI, Silva ED, Madlom MM, Goudie DR, Fleck BW, Wieczorek D, Kohlhase J, McTrusty AD, Gardiner C, Yale C, Moore AT, Russell-Eggitt I, Islam L, Lees M, Beales PL, Tuft SJ, Solano JB, Splitt M, Hertz JM, Prescott TE, Shears DJ, Nischal KK, Doco-Fenzy M, Prieur F, Temple IK, Lachlan KL, Damante G, Morrison DA, van Heyningen V, FitzPatrick DR (2016) Genetic analysis of ‘PAX6-negative’ individuals with Aniridia or Gillespie syndrome. PLoS One 11:e0153757.  https://doi.org/10.1371/journal.pone.0153757 CrossRefPubMedPubMedCentralGoogle Scholar
  17. Antinucci P, Nikolaou N, Meyer MP, Hindges R (2013) Teneurin-3 specifies morphological and functional connectivity of retinal ganglion cells in the vertebrate visual system. Cell Rep 5:582–592.  https://doi.org/10.1016/j.celrep.2013.09.045 CrossRefPubMedPubMedCentralGoogle Scholar
  18. Asai-Coakwell M, French CR, Berry KM, Ye M, Koss R, Somerville M, Mueller R, van Heyningen V, Waskiewicz AJ, Lehmann OJ (2007) GDF6, a novel locus for a spectrum of ocular developmental anomalies. Am J Hum Genet 80:306–315CrossRefPubMedGoogle Scholar
  19. Asai-Coakwell M, French CR, Ye M, Garcha K, Bigot K, Perera AG, Staehling-Hampton K, Mema SC, Chanda B, Mushegian A, Bamforth S, Doschak MR, Li G, Dobbs MB, Giampietro PF, Brooks BP, Vijayalakshmi P, Sauve Y, Abitbol M, Sundaresan P, van Heyningen V, Pourquie O, Underhill TM, Waskiewicz AJ, Lehmann OJ (2009) Incomplete penetrance and phenotypic variability characterize Gdf6-attributable oculo-skeletal phenotypes. Hum Mol Genet 18:1110–1121CrossRefPubMedGoogle Scholar
  20. Awadalla MS, Burdon KP, Souzeau E, Landers J, Hewitt AW, Sharma S, Craig JE (2014) Mutation in TMEM98 in a large white kindred with autosomal dominant nanophthalmos linked to 17p12-q12. JAMA Ophthalmol 132:970–977.  https://doi.org/10.1001/jamaophthalmol.2014.946 CrossRefPubMedGoogle Scholar
  21. Ayala-Ramirez R, Graue-Wiechers F, Robredo V, Amato-Almanza M, Horta-Diez I, Zenteno JC (2006) A new autosomal recessive syndrome consisting of posterior microphthalmos, retinitis pigmentosa, foveoschisis, and optic disc drusen is caused by a MFRP gene mutation. Mol Vis 12:1483–1489PubMedGoogle Scholar
  22. Bailey TJ, El-Hodiri H, Zhang L, Shah R, Mathers PH, Jamrich M (2004) Regulation of vertebrate eye development by Rx genes. Int J Dev Biol 48:761–770CrossRefPubMedGoogle Scholar
  23. Bakrania P, Robinson DO, Bunyan DJ, Salt A, Martin A, Crolla JA, Wyatt A, Fielder A, Ainsworth J, Moore A, Read S, Uddin J, Laws D, Pascuel-Salcedo D, Ayuso C, Allen L, Collin JR, Ragge NK (2007) SOX2 anophthalmia syndrome: 12 new cases demonstrating broader phenotype and high frequency of large gene deletions. Br J Ophthalmol 91:1471–1476CrossRefPubMedPubMedCentralGoogle Scholar
  24. Bakrania P, Efthymiou M, Klein JC, Salt A, Bunyan DJ, Wyatt A, Ponting CP, Martin A, Williams S, Lindley V, Gilmore J, Restori M, Robson AG, Neveu MM, Holder GE, Collin JR, Robinson DO, Farndon P, Johansen-Berg H, Gerrelli D, Ragge NK (2008) Mutations in BMP4 cause eye, brain, and digit developmental anomalies: overlap between the BMP4 and hedgehog signaling pathways. Am J Hum Genet 82:304–319CrossRefPubMedPubMedCentralGoogle Scholar
  25. Baldessari D, Badaloni A, Longhi R, Zappavigna V, Consalez GG (2004) MAB21L2, a vertebrate member of the Male-abnormal 21 family, modulates BMP signaling and interacts with SMAD1. BMC Cell Biol 5:48.  https://doi.org/10.1186/1471-2121-5-48 CrossRefPubMedPubMedCentralGoogle Scholar
  26. Balikova I, de Ravel T, Ayuso C, Thienpont B, Casteels I, Villaverde C, Devriendt K, Fryns JP, Vermeesch JR (2011) High frequency of submicroscopic chromosomal deletions in patients with idiopathic congenital eye malformations. Am J Ophthalmol 151:1087–1094 e45CrossRefPubMedGoogle Scholar
  27. Bardakjian T, Krall M, Wu D, Lao R, Tang PL, Wan E, Kopinsky S, Schneider A, Kwok PY, Slavotinek A (2017) A recurrent, non-penetrant sequence variant, p.Arg266Cys in Growth/Differentiation Factor 3 (GDF3) in a female with unilateral anophthalmia and skeletal anomalies. Am J Ophthalmol Case Rep 7:102–106.  https://doi.org/10.1016/j.ajoc.2017.06.006 CrossRefPubMedPubMedCentralGoogle Scholar
  28. Bennett CP, Betts DR, Seller MJ (1991) Deletion 14q (q22q23) associated with anophthalmia, absent pituitary, and other abnormalities. J Med Genet 28:280–281CrossRefPubMedPubMedCentralGoogle Scholar
  29. Ben-Zur T, Feige E, Motro B, Wides R (2000) The mammalian Odz gene family: homologs of a Drosophila pair-rule gene with expression implying distinct yet overlapping developmental roles. Dev Biol 217:107–120.  https://doi.org/10.1006/dbio.1999.9532 CrossRefPubMedGoogle Scholar
  30. Bermejo E, Martinez-Frias ML (1998) Congenital eye malformations: clinical-epidemiological analysis of 1,124,654 consecutive births in Spain. Am J Med Genet 75:497–504CrossRefPubMedGoogle Scholar
  31. Berry V, Yang Z, Addison PK, Francis PJ, Ionides A, Karan G, Jiang L, Lin W, Hu J, Yang R, Moore A, Zhang K, Bhattacharya SS (2004) Recurrent 17 bp duplication in PITX3 is primarily associated with posterior polar cataract (CPP4). J Med Genet 41:e109.  https://doi.org/10.1136/jmg.2004.020289 CrossRefPubMedPubMedCentralGoogle Scholar
  32. Bertuzzi S, Hindges R, Mui SH, O’Leary DD, Lemke G (1999) The homeodomain protein vax1 is required for axon guidance and major tract formation in the developing forebrain. Genes Dev 13:3092–3105CrossRefPubMedPubMedCentralGoogle Scholar
  33. Bhatia S, Bengani H, Fish M, Brown A, Divizia MT, de Marco R, Damante G, Grainger R, van Heyningen V, Kleinjan DA (2013) Disruption of autoregulatory feedback by a mutation in a remote, ultraconserved PAX6 enhancer causes aniridia. Am J Hum Genet 93:1126–1134.  https://doi.org/10.1016/j.ajhg.2013.10.028 CrossRefPubMedPubMedCentralGoogle Scholar
  34. Bidinost C, Matsumoto M, Chung D, Salem N, Zhang K, Stockton DW, Khoury A, Megarbane A, Bejjani BA, Traboulsi EI (2006) Heterozygous and homozygous mutations in PITX3 in a large Lebanese family with posterior polar cataracts and neurodevelopmental abnormalities. Investig Ophthalmol Vis Sci 47:1274–1280.  https://doi.org/10.1167/iovs.05-1095 CrossRefGoogle Scholar
  35. Blixt A, Mahlapuu M, Aitola M, Pelto-Huikko M, Enerback S, Carlsson P (2000) A forkhead gene, FoxE3, is essential for lens epithelial proliferation and closure of the lens vesicle. Genes Dev 14:245–254PubMedPubMedCentralGoogle Scholar
  36. Bremond-Gignac D, Bitoun P, Reis LM, Copin H, Murray JC, Semina EV (2010) Identification of dominant FOXE3 and PAX6 mutations in patients with congenital cataract and aniridia. Mol Vis 16:1705–1711PubMedPubMedCentralGoogle Scholar
  37. Brown NL, Patel S, Brzezinski J, Glaser T (2001) Math5 is required for retinal ganglion cell and optic nerve formation. Development 128:2497–2508PubMedPubMedCentralGoogle Scholar
  38. Burdon KP, McKay JD, Wirth MG, Russell-Eggit IM, Bhatti S, Ruddle JB, Dimasi D, Mackey DA, Craig JE (2006) The PITX3 gene in posterior polar congenital cataract in Australia. Mol Vis 12:367–371PubMedGoogle Scholar
  39. Burkitt Wright EM, Perveen R, Bowers N, Ramsden S, McCann E, O’Driscoll M, Lloyd IC, Clayton-Smith J, Black GC (2010) VSX2 in microphthalmia: a novel splice site mutation producing a severe microphthalmia phenotype. Br J Ophthalmol 94:386–388CrossRefPubMedGoogle Scholar
  40. Busby A, Dolk H, Collin R, Jones RB, Winter R (1998) Compiling a national register of babies born with anophthalmia/microphthalmia in England 1988-94. Arch Dis Child Fetal Neonatal Ed 79:F168–F173CrossRefPubMedPubMedCentralGoogle Scholar
  41. Casey J, Kawaguchi R, Morrissey M, Sun H, McGettigan P, Nielsen JE, Conroy J, Regan R, Kenny E, Cormican P, Morris DW, Tormey P, Chroinin MN, Kennedy BN, Lynch S, Green A, Ennis S (2011) First implication of STRA6 mutations in isolated anophthalmia, microphthalmia, and coloboma: a new dimension to the STRA6 phenotype. Hum Mutat 32:1417–1426.  https://doi.org/10.1002/humu.21590 CrossRefPubMedPubMedCentralGoogle Scholar
  42. Cavodeassi F, Creuzet S, Etchevers HC (2018) The hedgehog pathway and ocular developmental anomalies. Hum Genet.  https://doi.org/10.1007/s00439-018-1918-8 CrossRefPubMedGoogle Scholar
  43. Ceroni F, Aguilera-Garcia D, Chassaing N, Bax DA, Blanco-Kelly F, Ramos P, Tarilonte M, Villaverde C, da Silva LRJ, Ballesta-Martinez MJ, Sanchez-Soler MJ, Holt RJ, Cooper-Charles L, Bruty J, Wallis Y, McMullan D, Hoffman J, Bunyan D, Stewart A, Stewart H, Lachlan K, Study DDD, Fryer A, McKay V, Roume J, Dureau P, Saggar A, Griffiths M, Calvas P, Ayuso C, Corton M, Ragge NK (2018) New GJA8 variants and phenotypes highlight its critical role in a broad spectrum of eye anomalies. Hum Genet.  https://doi.org/10.1007/s00439-018-1875-2 CrossRefPubMedGoogle Scholar
  44. Chambers TM, Agopian AJ, Lewis RA, Langlois PH, Danysh HE, Weber KA, Shaw GM, Mitchell LE, Lupo PJ (2018) Epidemiology of anophthalmia and microphthalmia: prevalence and patterns in Texas, 1999–2009. Am J Med Genet A.  https://doi.org/10.1002/ajmg.a.40352 CrossRefPubMedGoogle Scholar
  45. Chassaing N, Gilbert-Dussardier B, Nicot F, Fermeaux V, Encha-Razavi F, Fiorenza M, Toutain A, Calvas P (2007) Germinal mosaicism and familial recurrence of a SOX2 mutation with highly variable phenotypic expression extending from AEG syndrome to absence of ocular involvement. Am J Med Genet A 143:289–291CrossRefGoogle Scholar
  46. Chassaing N, Golzio C, Odent S, Lequeux L, Vigouroux A, Martinovic-Bouriel J, Tiziano FD, Masini L, Piro F, Maragliano G, Delezoide AL, Attie-Bitach T, Manouvrier-Hanu S, Etchevers HC, Calvas P (2009) Phenotypic spectrum of STRA6 mutations: from Matthew-Wood syndrome to non-lethal anophthalmia. Hum Mutat 30:E673–E681CrossRefPubMedGoogle Scholar
  47. Chassaing N, Sorrentino S, Davis EE, Martin-Coignard D, Iacovelli A, Paznekas W, Webb BD, Faye-Petersen O, Encha-Razavi F, Lequeux L, Vigouroux A, Yesilyurt A, Boyadjiev SA, Kayserili H, Loget P, Carles D, Sergi C, Puvabanditsin S, Chen CP, Etchevers HC, Katsanis N, Mercer CL, Calvas P, Jabs EW (2012) OTX2 mutations contribute to the otocephaly–dysgnathia complex. J Med Genet 49:373–379CrossRefPubMedGoogle Scholar
  48. Chassaing N, Ragge N, Kariminejad A, Buffet A, Ghaderi-Sohi S, Martinovic J, Calvas P (2013) Mutation analysis of the STRA6 gene in isolated and non-isolated anophthalmia/microphthalmia. Clin Genet 83:244–250CrossRefPubMedGoogle Scholar
  49. Chassaing N, Causse A, Vigouroux A, Delahaye A, Alessandri JL, Boespflug-Tanguy O, Boute-Benejean O, Dollfus H, Duban-Bedu B, Gilbert-Dussardier B, Giuliano F, Gonzales M, Holder-Espinasse M, Isidor B, Jacquemont ML, Lacombe D, Martin-Coignard D, Mathieu-Dramard M, Odent S, Picone O, Pinson L, Quelin C, Sigaudy S, Toutain A, Thauvin-Robinet C, Kaplan J, Calvas P (2014) Molecular findings and clinical data in a cohort of 150 patients with anophthalmia/microphthalmia. Clin Genet 86:326–334CrossRefPubMedGoogle Scholar
  50. Chassaing N, Davis EE, McKnight KL, Niederriter AR, Causse A, David V, Desmaison A, Lamarre S, Vincent-Delorme C, Pasquier L, Coubes C, Lacombe D, Rossi M, Dufier JL, Dollfus H, Kaplan J, Katsanis N, Etchevers HC, Faguer S, Calvas P (2016a) Targeted resequencing identifies PTCH1 as a major contributor to ocular developmental anomalies and extends the SOX2 regulatory network. Genome Res 26:474–485.  https://doi.org/10.1101/gr.196048.115 CrossRefPubMedPubMedCentralGoogle Scholar
  51. Chassaing N, Ragge N, Plaisancie J, Patat O, Genevieve D, Rivier F, Malrieu-Eliaou C, Hamel C, Kaplan J, Calvas P (2016b) Confirmation of TENM3 involvement in autosomal recessive colobomatous microphthalmia. Am J Med Genet A 170:1895–1898.  https://doi.org/10.1002/ajmg.a.37667 CrossRefPubMedGoogle Scholar
  52. Chatterjee S, Pal JK (2009) Role of 5′- and 3′-untranslated regions of mRNAs in human diseases. Biol Cell 101:251–262.  https://doi.org/10.1042/BC20080104 CrossRefPubMedGoogle Scholar
  53. Cheyette BN, Green PJ, Martin K, Garren H, Hartenstein V, Zipursky SL (1994) The Drosophila sine oculis locus encodes a homeodomain-containing protein required for the development of the entire visual system. Neuron 12:977–996CrossRefPubMedGoogle Scholar
  54. Chitayat D, Sroka H, Keating S, Colby RS, Ryan G, Toi A, Blaser S, Viero S, Devisme L, Boute-Benejean O, Manouvrier-Hanu S, Mortier G, Loeys B, Rauch A, Bitoun P (2007) The PDAC syndrome (pulmonary hypoplasia/agenesis, diaphragmatic hernia/eventration, anophthalmia/microphthalmia, and cardiac defect) (Spear syndrome, Matthew-Wood syndrome): report of eight cases including a living child and further evidence for autosomal recessive inheritance. Am J Med Genet A 143A:1268–1281.  https://doi.org/10.1002/ajmg.a.31788 CrossRefPubMedGoogle Scholar
  55. Choi A, Lao R, Ling-Fung Tang P, Wan E, Mayer W, Bardakjian T, Shaw GM, Kwok PY, Schneider A, Slavotinek A (2015) Novel mutations in PXDN cause microphthalmia and anterior segment dysgenesis. Eur J Hum Genet 23:337–341.  https://doi.org/10.1038/ejhg.2014.119 CrossRefPubMedGoogle Scholar
  56. Chou CM, Nelson C, Tarle SA, Pribila JT, Bardakjian T, Woods S, Schneider A, Glaser T (2015) Biochemical basis for dominant inheritance, variable penetrance, and maternal effects in RBP4 congenital eye disease. Cell 161:634–646.  https://doi.org/10.1016/j.cell.2015.03.006 CrossRefPubMedPubMedCentralGoogle Scholar
  57. Chow KL, Hall DH, Emmons SW (1995) The mab-21 gene of Caenorhabditis elegans encodes a novel protein required for choice of alternate cell fates. Development 121:3615–3626PubMedGoogle Scholar
  58. Cipriani V, Silva RS, Arno G, Pontikos N, Kalhoro A, Valeina S, Inashkina I, Audere M, Rutka K, Puech B, Michaelides M, van Heyningen V, Lace B, Webster AR, Moore AT (2017) Duplication events downstream of IRX1 cause North Carolina macular dystrophy at the MCDR3 locus. Sci Rep 7:7512.  https://doi.org/10.1038/s41598-017-06387-6 CrossRefPubMedPubMedCentralGoogle Scholar
  59. Collery RF, Volberding PJ, Bostrom JR, Link BA, Besharse JC (2016) Loss of zebrafish Mfrp causes nanophthalmia, hyperopia, and accumulation of subretinal macrophages. Investig Ophthalmol Vis Sci 57:6805–6814.  https://doi.org/10.1167/iovs.16-19593 CrossRefGoogle Scholar
  60. Conte I, Hadfield KD, Barbato S, Carrella S, Pizzo M, Bhat RS, Carissimo A, Karali M, Porter LF, Urquhart J, Hateley S, O’Sullivan J, Manson FD, Neuhauss SC, Banfi S, Black GC (2015) MiR-204 is responsible for inherited retinal dystrophy associated with ocular coloboma. Proc Natl Acad Sci USA 112:E3236–E3245.  https://doi.org/10.1073/pnas.1401464112 CrossRefPubMedGoogle Scholar
  61. Crespi J, Buil JA, Bassaganyas F, Vela-Segarra JI, Diaz-Cascajosa J, Ayala-Ramirez R, Zenteno JC (2008) A novel mutation confirms MFRP as the gene causing the syndrome of nanophthalmos-renititis pigmentosa-foveoschisis-optic disk drusen. Am J Ophthalmol 146:323–328.  https://doi.org/10.1016/j.ajo.2008.04.029 CrossRefPubMedGoogle Scholar
  62. Cui YX, Xia XY, Zhou Y, Gao L, Shang XJ, Ni T, Wang WP, Fan XB, Yin HL, Jiang SJ, Yao B, Hu YA, Wang G, Li XJ (2013) Novel mutations of ABCB6 associated with autosomal dominant dyschromatosis universalis hereditaria. PLoS One 8:e79808.  https://doi.org/10.1371/journal.pone.0079808 CrossRefPubMedPubMedCentralGoogle Scholar
  63. Cukras C, Gaasterland T, Lee P, Gudiseva HV, Chavali VR, Pullakhandam R, Maranhao B, Edsall L, Soares S, Reddy GB, Sieving PA, Ayyagari R (2012) Exome analysis identified a novel mutation in the RBP4 gene in a consanguineous pedigree with retinal dystrophy and developmental abnormalities. PLoS One 7:e50205.  https://doi.org/10.1371/journal.pone.0050205 CrossRefPubMedPubMedCentralGoogle Scholar
  64. Cunningham TJ, Duester G (2015) Mechanisms of retinoic acid signalling and its roles in organ and limb development. Nat Rev Mol Cell Biol 16:110–123.  https://doi.org/10.1038/nrm3932 CrossRefPubMedPubMedCentralGoogle Scholar
  65. Cvekl A, Wang WL (2009) Retinoic acid signaling in mammalian eye development. Exp Eye Res 89:280–291CrossRefPubMedPubMedCentralGoogle Scholar
  66. Dale N, Salt A (2007) Early support developmental journal for children with visual impairment: the case for a new developmental framework for early intervention. Child Care Health Dev 33:684–690.  https://doi.org/10.1111/j.1365-2214.2007.00798.x CrossRefPubMedGoogle Scholar
  67. Dansault A, David G, Schwartz C, Jaliffa C, Vieira V, de la Houssaye G, Bigot K, Catin F, Tattu L, Chopin C, Halimi P, Roche O, Van Regemorter N, Munier F, Schorderet D, Dufier JL, Marsac C, Ricquier D, Menasche M, Penfornis A, Abitbol M (2007) Three new PAX6 mutations including one causing an unusual ophthalmic phenotype associated with neurodevelopmental abnormalities. Mol Vis 13:511–523PubMedPubMedCentralGoogle Scholar
  68. Davidson AE, Liskova P, Evans CJ, Dudakova L, Noskova L, Pontikos N, Hartmannova H, Hodanova K, Stranecky V, Kozmik Z, Levis HJ, Idigo N, Sasai N, Maher GJ, Bellingham J, Veli N, Ebenezer ND, Cheetham ME, Daniels JT, Thaung CM, Jirsova K, Plagnol V, Filipec M, Kmoch S, Tuft SJ, Hardcastle AJ (2016) Autosomal-dominant corneal endothelial dystrophies CHED1 and PPCD1 are allelic disorders caused by non-coding mutations in the promoter of OVOL2. Am J Hum Genet 98:75–89.  https://doi.org/10.1016/j.ajhg.2015.11.018 CrossRefPubMedGoogle Scholar
  69. de Oliveira Mann CC, Kiefersauer R, Witte G, Hopfner KP (2016) Structural and biochemical characterization of the cell fate determining nucleotidyltransferase fold protein MAB21L1. Sci Rep 6:27498.  https://doi.org/10.1038/srep27498 CrossRefPubMedPubMedCentralGoogle Scholar
  70. Dehghani M, Dehghan Tezerjani M, Metanat Z, Vahidi Mehrjardi MY (2017) A novel missense mutation in the ALDH13 gene causes anophthalmia in two unrelated iranian consanguineous families. Int J Mol Cell Med 6:131–134.  https://doi.org/10.22088/acadpub.BUMS.6.2.7 CrossRefPubMedPubMedCentralGoogle Scholar
  71. Delahaye A, Bitoun P, Drunat S, Gerard-Blanluet M, Chassaing N, Toutain A, Verloes A, Gatelais F, Legendre M, Faivre L, Passemard S, Aboura A, Kaltenbach S, Quentin S, Dupont C, Tabet AC, Amselem S, Elion J, Gressens P, Pipiras E, Benzacken B (2012) Genomic imbalances detected by array-CGH in patients with syndromal ocular developmental anomalies. Eur J Hum Genet 20:527–533CrossRefPubMedPubMedCentralGoogle Scholar
  72. Deml B, Kariminejad A, Borujerdi RH, Muheisen S, Reis LM, Semina EV (2015) Mutations in MAB21L2 result in ocular coloboma, microcornea and cataracts. PLoS Genet 11:e1005002.  https://doi.org/10.1371/journal.pgen.1005002 CrossRefPubMedPubMedCentralGoogle Scholar
  73. Deml B, Reis LM, Lemyre E, Clark RD, Kariminejad A, Semina EV (2016) Novel mutations in PAX6, OTX2 and NDP in anophthalmia, microphthalmia and coloboma. Eur J Hum Genet 24:535–541.  https://doi.org/10.1038/ejhg.2015.155 CrossRefPubMedGoogle Scholar
  74. den Hollander AI, Biyanwila J, Kovach P, Bardakjian T, Traboulsi EI, Ragge NK, Schneider A, Malicki J (2010) Genetic defects of GDF6 in the zebrafish out of sight mutant and in human eye developmental anomalies. BMC Genet 11:102.  https://doi.org/10.1186/1471-2156-11-102 CrossRefGoogle Scholar
  75. Dennert N, Engels H, Cremer K, Becker J, Wohlleber E, Albrecht B, Ehret JK, Ludecke HJ, Suri M, Carignani G, Renieri A, Kukuk GM, Wieland T, Andrieux J, Strom TM, Wieczorek D, Dieux-Coeslier A, Zink AM (2017) De novo microdeletions and point mutations affecting SOX2 in three individuals with intellectual disability but without major eye malformations. Am J Med Genet A 173:435–443.  https://doi.org/10.1002/ajmg.a.38034 CrossRefPubMedGoogle Scholar
  76. Dimanlig PV, Faber SC, Auerbach W, Makarenkova HP, Lang RA (2001) The upstream ectoderm enhancer in Pax6 has an important role in lens induction. Development 128:4415–4424PubMedGoogle Scholar
  77. Dolk H, Busby A, Armstrong BG, Walls PH (1998) Geographical variation in anophthalmia and microphthalmia in England, 1988-94. BMJ 317:905–909 (discussion 910) CrossRefPubMedPubMedCentralGoogle Scholar
  78. Doucette L, Green J, Fernandez B, Johnson GJ, Parfrey P, Young TL (2011) A novel, non-stop mutation in FOXE3 causes an autosomal dominant form of variable anterior segment dysgenesis including Peters anomaly. Eur J Hum Genet 19:293–299CrossRefPubMedGoogle Scholar
  79. Dudley AT, Robertson EJ (1997) Overlapping expression domains of bone morphogenetic protein family members potentially account for limited tissue defects in BMP7 deficient embryos. Dev Dyn 208:349–362.  https://doi.org/10.1002/(SICI)1097-0177(199703)208:3%3C349::AID-AJA6%3E3.0.CO;2-I CrossRefPubMedGoogle Scholar
  80. Dudley AT, Lyons KM, Robertson EJ (1995) A requirement for bone morphogenetic protein-7 during development of the mammalian kidney and eye. Genes Dev 9:2795–2807CrossRefGoogle Scholar
  81. Duszak RS (2009) Congenital rubella syndrome—major review. Optometry 80:36–43.  https://doi.org/10.1016/j.optm.2008.03.006 CrossRefPubMedGoogle Scholar
  82. Edwards MM, McLeod DS, Li R, Grebe R, Bhutto I, Mu X, Lutty GA (2012) The deletion of Math5 disrupts retinal blood vessel and glial development in mice. Exp Eye Res 96:147–156.  https://doi.org/10.1016/j.exer.2011.12.005 CrossRefPubMedGoogle Scholar
  83. Elliott J, Maltby EL, Reynolds B (1993) A case of deletion 14(q22.1–>q22.3) associated with anophthalmia and pituitary abnormalities. J Med Genet 30:251–252CrossRefPubMedPubMedCentralGoogle Scholar
  84. Faivre L, Williamson KA, Faber V, Laurent N, Grimaldi M, Thauvin-Robinet C, Durand C, Mugneret F, Gouyon JB, Bron A, Huet F, Hayward C, Heyningen V, Fitzpatrick DR (2006) Recurrence of SOX2 anophthalmia syndrome with gonosomal mosaicism in a phenotypically normal mother. Am J Med Genet A 140:636–639CrossRefPubMedGoogle Scholar
  85. Fantes J, Redeker B, Breen M, Boyle S, Brown J, Fletcher J, Jones S, Bickmore W, Fukushima Y, Mannens M et al (1995) Aniridia-associated cytogenetic rearrangements suggest that a position effect may cause the mutant phenotype. Hum Mol Genet 4:415–422CrossRefPubMedPubMedCentralGoogle Scholar
  86. Fantes J, Ragge NK, Lynch SA, McGill NI, Collin JR, Howard-Peebles PN, Hayward C, Vivian AJ, Williamson K, van Heyningen V, FitzPatrick DR (2003) Mutations in SOX2 cause anophthalmia. Nat Genet 33:461–463CrossRefPubMedGoogle Scholar
  87. Fares-Taie L, Gerber S, Chassaing N, Clayton-Smith J, Hanein S, Silva E, Serey M, Serre V, Gerard X, Baumann C, Plessis G, Demeer B, Bretillon L, Bole C, Nitschke P, Munnich A, Lyonnet S, Calvas P, Kaplan J, Ragge N, Rozet JM (2013) ALDH1A3 mutations cause recessive anophthalmia and microphthalmia. Am J Hum Genet 92:265–270CrossRefPubMedPubMedCentralGoogle Scholar
  88. Feng K, Zhou XH, Oohashi T, Morgelin M, Lustig A, Hirakawa S, Ninomiya Y, Engel J, Rauch U, Fassler R (2002) All four members of the Ten-m/Odz family of transmembrane proteins form dimers. J Biol Chem 277:26128–26135.  https://doi.org/10.1074/jbc.M203722200 CrossRefPubMedGoogle Scholar
  89. Ferda Percin E, Ploder LA, Yu JJ, Arici K, Horsford DJ, Rutherford A, Bapat B, Cox DW, Duncan AM, Kalnins VI, Kocak-Altintas A, Sowden JC, Traboulsi E, Sarfarazi M, McInnes RR (2000) Human microphthalmia associated with mutations in the retinal homeobox gene CHX10. Nat Genet 25:397–401CrossRefPubMedGoogle Scholar
  90. Finzi S, Li Y, Mitchell TN, Farr A, Maumenee IH, Sallum JM, Sundin O (2005) Posterior polar cataract: genetic analysis of a large family. Ophthalmic Genet 26:125–130.  https://doi.org/10.1080/13816810500229124 CrossRefPubMedGoogle Scholar
  91. Fitzpatrick DR, van Heyningen V (2005) Developmental eye disorders. Curr Opin Genet Dev 15:348–353CrossRefPubMedGoogle Scholar
  92. Fuhrmann S (2010) Eye morphogenesis and patterning of the optic vesicle. Curr Top Dev Biol 93:61–84.  https://doi.org/10.1016/B978-0-12-385044-7.00003-5 CrossRefPubMedPubMedCentralGoogle Scholar
  93. Gal A, Rau I, El Matri L, Kreienkamp HJ, Fehr S, Baklouti K, Chouchane I, Li Y, Rehbein M, Fuchs J, Fledelius HC, Vilhelmsen K, Schorderet DF, Munier FL, Ostergaard E, Thompson DA, Rosenberg T (2011) Autosomal-recessive posterior microphthalmos is caused by mutations in PRSS56, a gene encoding a trypsin-like serine protease. Am J Hum Genet 88:382–390.  https://doi.org/10.1016/j.ajhg.2011.02.006 CrossRefPubMedPubMedCentralGoogle Scholar
  94. Gallardo ME, Lopez-Rios J, Fernaud-Espinosa I, Granadino B, Sanz R, Ramos C, Ayuso C, Seller MJ, Brunner HG, Bovolenta P, Rodriguez de Cordoba S (1999) Genomic cloning and characterization of the human homeobox gene SIX6 reveals a cluster of SIX genes in chromosome 14 and associates SIX6 hemizygosity with bilateral anophthalmia and pituitary anomalies. Genomics 61:82–91.  https://doi.org/10.1006/geno.1999.5916 CrossRefPubMedGoogle Scholar
  95. Gallardo ME, Rodriguez De Cordoba S, Schneider AS, Dwyer MA, Ayuso C, Bovolenta P (2004) Analysis of the developmental SIX6 homeobox gene in patients with anophthalmia/microphthalmia. Am J Med Genet A 129A:92–94.  https://doi.org/10.1002/ajmg.a.30126 CrossRefPubMedGoogle Scholar
  96. Garcia-Montalvo IA, Pelcastre-Luna E, Nelson-Mora J, Buentello-Volante B, Miranda-Duarte A, Zenteno JC (2014) Mutational screening of FOXE3, GDF3, ATOH7, and ALDH1A3 in congenital ocular malformations. Possible contribution of the FOXE3 p.VAL201MET variant to the risk of severe eye malformations. Ophthalmic Genet 35:190–192.  https://doi.org/10.3109/13816810.2014.903983 CrossRefPubMedGoogle Scholar
  97. Gerth-Kahlert C, Williamson K, Ansari M, Rainger JK, Hingst V, Zimmermann T, Tech S, Guthoff RF, van Heyningen V, FitzPatrick DR (2013) Clinical and mutation analysis of 51 probands with anophthalmia and/or severe microphthalmia from a single center. Mol Genet Genomic Med 1:15–31CrossRefPubMedPubMedCentralGoogle Scholar
  98. Ghiasvand NM, Rudolph DD, Mashayekhi M, Brzezinski JA, Goldman D, Glaser T (2011) Deletion of a remote enhancer near ATOH7 disrupts retinal neurogenesis, causing NCRNA disease. Nat Neurosci 14:578–586.  https://doi.org/10.1038/nn.2798 CrossRefPubMedPubMedCentralGoogle Scholar
  99. Glaser T, Jepeal L, Edwards JG, Young SR, Favor J, Maas RL (1994) PAX6 gene dosage effect in a family with congenital cataracts, aniridia, anophthalmia and central nervous system defects. Nat Genet 7:463–471CrossRefGoogle Scholar
  100. Golzio C, Martinovic-Bouriel J, Thomas S, Mougou-Zrelli S, Grattagliano-Bessieres B, Bonniere M, Delahaye S, Munnich A, Encha-Razavi F, Lyonnet S, Vekemans M, Attie-Bitach T, Etchevers HC (2007) Matthew-Wood syndrome is caused by truncating mutations in the retinol-binding protein receptor gene STRA6. Am J Hum Genet 80:1179–1187CrossRefPubMedPubMedCentralGoogle Scholar
  101. Gonzalez-Rodriguez J, Pelcastre EL, Tovilla-Canales JL, Garcia-Ortiz JE, Amato-Almanza M, Villanueva-Mendoza C, Espinosa-Mattar Z, Zenteno JC (2010) Mutational screening of CHX10, GDF6, OTX2, RAX and SOX2 genes in 50 unrelated microphthalmia–anophthalmia–coloboma (MAC) spectrum cases. Br J Ophthalmol 94:1100–1104CrossRefPubMedGoogle Scholar
  102. Hall HN, Williamson KA, FitzPatrick DR (2018) The genetic architecture of aniridia and Gillespie syndrome. Hum Genet.  https://doi.org/10.1007/s00439-018-1934-8 CrossRefPubMedGoogle Scholar
  103. Hallonet M, Hollemann T, Pieler T, Gruss P (1999) Vax1, a novel homeobox-containing gene, directs development of the basal forebrain and visual system. Genes Dev 13:3106–3114CrossRefPubMedPubMedCentralGoogle Scholar
  104. Hayashi S, Okamoto N, Makita Y, Hata A, Imoto I, Inazawa J (2008) Heterozygous deletion at 14q22.1-q22.3 including the BMP4 gene in a patient with psychomotor retardation, congenital corneal opacity and feet polysyndactyly. Am J Med Genet A 146A:2905–2910CrossRefPubMedGoogle Scholar
  105. Helias V, Saison C, Ballif BA, Peyrard T, Takahashi J, Takahashi H, Tanaka M, Deybach JC, Puy H, Le Gall M, Sureau C, Pham BN, Le Pennec PY, Tani Y, Cartron JP, Arnaud L (2012) ABCB6 is dispensable for erythropoiesis and specifies the new blood group system Langereis. Nat Genet 44:170–173.  https://doi.org/10.1038/ng.1069 CrossRefPubMedPubMedCentralGoogle Scholar
  106. Henderson RH, Williamson KA, Kennedy JS, Webster AR, Holder GE, Robson AG, FitzPatrick DR, van Heyningen V, Moore AT (2009) A rare de novo nonsense mutation in OTX2 causes early onset retinal dystrophy and pituitary dysfunction. Mol Vis 15:2442–2447PubMedPubMedCentralGoogle Scholar
  107. Herpin A, Lelong C, Favrel P (2004) Transforming growth factor-beta-related proteins: an ancestral and widespread superfamily of cytokines in metazoans. Dev Comp Immunol 28:461–485.  https://doi.org/10.1016/j.dci.2003.09.007 CrossRefPubMedGoogle Scholar
  108. Hever AM, Williamson KA, van Heyningen V (2006) Developmental malformations of the eye: the role of PAX6, SOX2 and OTX2. Clin Genet 69:459–470CrossRefPubMedGoogle Scholar
  109. Hingorani M, Hanson I, van Heyningen V (2012) Aniridia. Eur J Hum Genet 20:1011–1017.  https://doi.org/10.1038/ejhg.2012.100 CrossRefPubMedPubMedCentralGoogle Scholar
  110. Holt R, Ceroni F, Bax DA, Broadgate S, Diaz DG, Santos C, Gerrelli D, Ragge NK (2017) New variant and expression studies provide further insight into the genotype–phenotype correlation in YAP1-related developmental eye disorders. Sci Rep 7:7975.  https://doi.org/10.1038/s41598-017-08397-w CrossRefPubMedPubMedCentralGoogle Scholar
  111. Horn D, Prescott T, Houge G, Braekke K, Rosendahl K, Nishimura G, FitzPatrick DR, Spranger J (2015) A novel oculo-skeletal syndrome with intellectual disability caused by a particular MAB21L2 mutation. Eur J Med Genet 58:387–391.  https://doi.org/10.1016/j.ejmg.2015.06.003 CrossRefPubMedGoogle Scholar
  112. Huang X, Xiao X, Jia X, Li S, Li M, Guo X, Liu X, Zhang Q (2015) Mutation analysis of the genes associated with anterior segment dysgenesis, microcornea and microphthalmia in 257 patients with glaucoma. Int J Mol Med 36:1111–1117.  https://doi.org/10.3892/ijmm.2015.2325 CrossRefPubMedGoogle Scholar
  113. Huang XF, Huang ZQ, Lin D, Dai ML, Wang QF, Chen ZJ, Jin ZB, Wang Y (2017) Unraveling the genetic cause of a consanguineous family with unilateral coloboma and retinoschisis: expanding the phenotypic variability of RAX mutations. Sci Rep 7:9064.  https://doi.org/10.1038/s41598-017-09276-0 CrossRefPubMedPubMedCentralGoogle Scholar
  114. Inoue M, Kamachi Y, Matsunami H, Imada K, Uchikawa M, Kondoh H (2007) PAX6 and SOX2-dependent regulation of the Sox2 enhancer N-3 involved in embryonic visual system development. Genes Cells 12:1049–1061.  https://doi.org/10.1111/j.1365-2443.2007.01114.x CrossRefPubMedGoogle Scholar
  115. Iseri SU, Osborne RJ, Farrall M, Wyatt AW, Mirza G, Nurnberg G, Kluck C, Herbert H, Martin A, Hussain MS, Collin JR, Lathrop M, Nurnberg P, Ragoussis J, Ragge NK (2009) Seeing clearly: the dominant and recessive nature of FOXE3 in eye developmental anomalies. Hum Mutat 30:1378–1386CrossRefPubMedGoogle Scholar
  116. Iseri SU, Wyatt AW, Nurnberg G, Kluck C, Nurnberg P, Holder GE, Blair E, Salt A, Ragge NK (2010) Use of genome-wide SNP homozygosity mapping in small pedigrees to identify new mutations in VSX2 causing recessive microphthalmia and a semidominant inner retinal dystrophy. Hum Genet 128:51–60.  https://doi.org/10.1007/s00439-010-0823-6 CrossRefPubMedGoogle Scholar
  117. Islam L, Kelberman D, Williamson L, Lewis N, Glindzicz MB, Nischal KK, Sowden JC (2015) Functional analysis of FOXE3 mutations causing dominant and recessive ocular anterior segment disease. Hum Mutat 36:296–300.  https://doi.org/10.1002/humu.22741 CrossRefPubMedGoogle Scholar
  118. Jamieson RV, Perveen R, Kerr B, Carette M, Yardley J, Heon E, Wirth MG, van Heyningen V, Donnai D, Munier F, Black GC (2002) Domain disruption and mutation of the bZIP transcription factor, MAF, associated with cataract, ocular anterior segment dysgenesis and coloboma. Hum Mol Genet 11:33–42CrossRefPubMedGoogle Scholar
  119. Jimenez NL, Flannick J, Yahyavi M, Li J, Bardakjian T, Tonkin L, Schneider A, Sherr EH, Slavotinek AM (2011) Targeted ‘next-generation’ sequencing in anophthalmia and microphthalmia patients confirms SOX2, OTX2 and FOXE3 mutations. BMC Med Genet 12:172CrossRefPubMedGoogle Scholar
  120. Kallen B, Tornqvist K (2005) The epidemiology of anophthalmia and microphthalmia in Sweden. Eur J Epidemiol 20:345–350CrossRefPubMedGoogle Scholar
  121. Kallen B, Robert E, Harris J (1996) The descriptive epidemiology of anophthalmia and microphthalmia. Int J Epidemiol 25:1009–1016CrossRefPubMedGoogle Scholar
  122. Kameya S, Hawes NL, Chang B, Heckenlively JR, Naggert JK, Nishina PM (2002) Mfrp, a gene encoding a frizzled related protein, is mutated in the mouse retinal degeneration 6. Hum Mol Genet 11:1879–1886CrossRefPubMedGoogle Scholar
  123. Kannabiran C, Singh H, Sahini N, Jalali S, Mohan G (2012) Mutations in TULP1, NR2E3, and MFRP genes in Indian families with autosomal recessive retinitis pigmentosa. Mol Vis 18:1165–1174PubMedPubMedCentralGoogle Scholar
  124. Kataoka K (2007) Multiple mechanisms and functions of maf transcription factors in the regulation of tissue-specific genes. J Biochem 141:775–781.  https://doi.org/10.1093/jb/mvm105 CrossRefPubMedGoogle Scholar
  125. Katoh M (2001) Molecular cloning and characterization of MFRP, a novel gene encoding a membrane-type Frizzled-related protein. Biochem Biophys Res Commun 282:116–123.  https://doi.org/10.1006/bbrc.2001.4551 CrossRefPubMedGoogle Scholar
  126. Kava MP, Nagarajan L (2009) Microphthalmia and microcornea: in congenital cytomegalovirus. Indian J Ophthalmol 57:323CrossRefPubMedGoogle Scholar
  127. Kawaguchi R, Yu J, Honda J, Hu J, Whitelegge J, Ping P, Wiita P, Bok D, Sun H (2007) A membrane receptor for retinol binding protein mediates cellular uptake of vitamin A. Science 315:820–825.  https://doi.org/10.1126/science.1136244 CrossRefPubMedGoogle Scholar
  128. Kelberman D, Rizzoti K, Avilion A, Bitner-Glindzicz M, Cianfarani S, Collins J, Chong WK, Kirk JM, Achermann JC, Ross R, Carmignac D, Lovell-Badge R, Robinson IC, Dattani MT (2006) Mutations within Sox2/SOX2 are associated with abnormalities in the hypothalamo-pituitary-gonadal axis in mice and humans. J Clin Investig 116:2442–2455PubMedGoogle Scholar
  129. Kelberman D, Islam L, Lakowski J, Bacchelli C, Chanudet E, Lescai F, Patel A, Stupka E, Buck A, Wolf S, Beales PL, Jacques TS, Bitner-Glindzicz M, Liasis A, Lehmann OJ, Kohlhase J, Nischal KK, Sowden JC (2014) Mutation of SALL2 causes recessive ocular coloboma in humans and mice. Hum Mol Genet 23:2511–2526.  https://doi.org/10.1093/hmg/ddt643 CrossRefPubMedPubMedCentralGoogle Scholar
  130. Keser V, Khan A, Siddiqui S, Lopez I, Ren H, Qamar R, Nadaf J, Majewski J, Chen R, Koenekoop RK (2017) The genetic causes of nonsyndromic congenital retinal detachment: a genetic and phenotypic study of Pakistani families. Investig Ophthalmol Vis Sci 58:1028–1036.  https://doi.org/10.1167/iovs.16-20281 CrossRefGoogle Scholar
  131. Khan K, Rudkin A, Parry DA, Burdon KP, McKibbin M, Logan CV, Abdelhamed ZI, Muecke JS, Fernandez-Fuentes N, Laurie KJ, Shires M, Fogarty R, Carr IM, Poulter JA, Morgan JE, Mohamed MD, Jafri H, Raashid Y, Meng N, Piseth H, Toomes C, Casson RJ, Taylor GR, Hammerton M, Sheridan E, Johnson CA, Inglehearn CF, Craig JE, Ali M (2011) Homozygous mutations in PXDN cause congenital cataract, corneal opacity, and developmental glaucoma. Am J Hum Genet 89:464–473.  https://doi.org/10.1016/j.ajhg.2011.08.005 CrossRefPubMedPubMedCentralGoogle Scholar
  132. Khan K, Logan CV, McKibbin M, Sheridan E, Elcioglu NH, Yenice O, Parry DA, Fernandez-Fuentes N, Abdelhamed ZI, Al-Maskari A, Poulter JA, Mohamed MD, Carr IM, Morgan JE, Jafri H, Raashid Y, Taylor GR, Johnson CA, Inglehearn CF, Toomes C, Ali M (2012) Next generation sequencing identifies mutations in Atonal homolog 7 (ATOH7) in families with global eye developmental defects. Hum Mol Genet 21:776–783CrossRefPubMedGoogle Scholar
  133. Khan AO, Aldahmesh MA, Noor J, Salem A, Alkuraya FS (2013) Lens subluxation and retinal dysfunction in a girl with homozygous VSX2 mutation. Ophthalmic Genet 36:8–13CrossRefPubMedGoogle Scholar
  134. Khan SY, Vasanth S, Kabir F, Gottsch JD, Khan AO, Chaerkady R, Lee MC, Leitch CC, Ma Z, Laux J, Villasmil R, Khan SN, Riazuddin S, Akram J, Cole RN, Talbot CC, Pourmand N, Zaghloul NA, Hejtmancik JF, Riazuddin SA (2016) FOXE3 contributes to Peters anomaly through transcriptional regulation of an autophagy-associated protein termed DNAJB1. Nat Commun 7:10953.  https://doi.org/10.1038/ncomms10953 CrossRefPubMedPubMedCentralGoogle Scholar
  135. Khan KN, Carss K, Raymond FL, Islam F, Nihr BioResource-Rare Diseases C, Moore AT, Michaelides M, Arno G (2017) Vitamin A deficiency due to bi-allelic mutation of RBP4: there’s more to it than meets the eye. Ophthalmic Genet 38:465–466.  https://doi.org/10.1080/13816810.2016.1227453 CrossRefPubMedGoogle Scholar
  136. Khorram D, Choi M, Roos BR, Stone EM, Kopel T, Allen R, Alward WL, Scheetz TE, Fingert JH (2015) Novel TMEM98 mutations in pedigrees with autosomal dominant nanophthalmos. Mol Vis 21:1017–1023PubMedPubMedCentralGoogle Scholar
  137. Kim N, Min KW, Kang KH, Lee EJ, Kim HT, Moon K, Choi J, Le D, Lee SH, Kim JW (2014) Regulation of retinal axon growth by secreted Vax1 homeodomain protein. Elife 3:e02671.  https://doi.org/10.7554/eLife.02671 CrossRefPubMedPubMedCentralGoogle Scholar
  138. Kohlhase J, Chitayat D, Kotzot D, Ceylaner S, Froster UG, Fuchs S, Montgomery T, Rösler B (2005) SALL4 mutations in Okihiro syndrome (Duane-radial ray syndrome), acro-renal-ocular syndrome, and related disorders. Hum Mutat 26:176–183CrossRefPubMedGoogle Scholar
  139. Komuro A, Nagai M, Navin NE, Sudol M (2003) WW domain-containing protein YAP associates with ErbB-4 and acts as a co-transcriptional activator for the carboxyl-terminal fragment of ErbB-4 that translocates to the nucleus. J Biol Chem 278:33334–33341.  https://doi.org/10.1074/jbc.M305597200 CrossRefGoogle Scholar
  140. Kondo H, Matsushita I, Tahira T, Uchio E, Kusaka S (2016) Mutations in ATOH7 gene in patients with nonsyndromic congenital retinal nonattachment and familial exudative vitreoretinopathy. Ophthalmic Genet 37:462–464.  https://doi.org/10.3109/13816810.2015.1120316 CrossRefPubMedGoogle Scholar
  141. Kudoh T, Dawid IB (2001) Zebrafish mab21l2 is specifically expressed in the presumptive eye and tectum from early somitogenesis onwards. Mech Dev 109:95–98CrossRefPubMedGoogle Scholar
  142. Kumar JP (2009) The sine oculis homeobox (SIX) family of transcription factors as regulators of development and disease. Cell Mol Life Sci 66:565–583.  https://doi.org/10.1007/s00018-008-8335-4 CrossRefPubMedPubMedCentralGoogle Scholar
  143. Lammer EJ, Chen DT, Hoar RM, Agnish ND, Benke PJ, Braun JT, Curry CJ, Fernhoff PM, Grix AW Jr, Lott IT et al (1985) Retinoic acid embryopathy. N Engl J Med 313:837–841CrossRefPubMedGoogle Scholar
  144. Landgren H, Blixt A, Carlsson P (2008) Persistent FoxE3 expression blocks cytoskeletal remodeling and organelle degradation during lens fiber differentiation. Investig Ophthalmol Vis Sci 49:4269–4277.  https://doi.org/10.1167/iovs.08-2243 CrossRefGoogle Scholar
  145. Lau GT, Wong OG, Chan PM, Kok KH, Wong RL, Chin KT, Lin MC, Kung HF, Chow KL (2001) Embryonic XMab21l2 expression is required for gastrulation and subsequent neural development. Biochem Biophys Res Commun 280:1378–1384.  https://doi.org/10.1006/bbrc.2001.4290 CrossRefPubMedGoogle Scholar
  146. Leamey CA, Merlin S, Lattouf P, Sawatari A, Zhou X, Demel N, Glendining KA, Oohashi T, Sur M, Fassler R (2007) Ten_m3 regulates eye-specific patterning in the mammalian visual pathway and is required for binocular vision. PLoS Biol 5:e241.  https://doi.org/10.1371/journal.pbio.0050241 CrossRefPubMedPubMedCentralGoogle Scholar
  147. Lemyre E, Lemieux N, Decarie JC, Lambert M (1998) Del(14)(q22.1q23.2) in a patient with anophthalmia and pituitary hypoplasia. Am J Med Genet 77:162–165CrossRefPubMedGoogle Scholar
  148. Lequeux L, Rio M, Vigouroux A, Titeux M, Etchevers H, Malecaze F, Chassaing N, Calvas P (2008) Confirmation of RAX gene involvement in human anophthalmia. Clin Genet 74:392–395CrossRefPubMedPubMedCentralGoogle Scholar
  149. Lin S, Harlalka GV, Hameed A, Reham HM, Yasin M, Muhammad N, Khan S, Baple EL, Crosby AH, Saleha S (2018) Novel mutations in ALDH1A3 associated with autosomal recessive anophthalmia/microphthalmia, and review of the literature. BMC Med Genet 19:160.  https://doi.org/10.1186/s12881-018-0678-6 CrossRefPubMedPubMedCentralGoogle Scholar
  150. Liu IS, Chen JD, Ploder L, Vidgen D, van der Kooy D, Kalnins VI, McInnes RR (1994) Developmental expression of a novel murine homeobox gene (Chx10): evidence for roles in determination of the neuroretina and inner nuclear layer. Neuron 13:377–393CrossRefPubMedPubMedCentralGoogle Scholar
  151. Liu H, Li Y, Hung KK, Wang N, Wang C, Chen X, Sheng D, Fu X, See K, Foo JN, Low H, Liany H, Irwan ID, Liu J, Yang B, Chen M, Yu Y, Yu G, Niu G, You J, Zhou Y, Ma S, Wang T, Yan X, Goh BK, Common JE, Lane BE, Sun Y, Zhou G, Lu X, Wang Z, Tian H, Cao Y, Chen S, Liu Q, Liu J, Zhang F (2014) Genome-wide linkage, exome sequencing and functional analyses identify ABCB6 as the pathogenic gene of dyschromatosis universalis hereditaria. PLoS One 9:e87250.  https://doi.org/10.1371/journal.pone.0087250 CrossRefPubMedPubMedCentralGoogle Scholar
  152. Liu H, Liu H, Tang J, Lin Q, Sun Y, Wang C, Yang H, Khan MR, Peerbux MW, Ahmad S, Bukhari I, Zhu J (2017a) Whole exome sequencing identifies a novel mutation in the PITX3 gene, causing autosomal dominant congenital cataracts in a Chinese family. Ann Clin Lab Sci 47:92–95PubMedGoogle Scholar
  153. Liu Y, Lu Y, Liu S, Liao S (2017b) Novel compound heterozygous mutations of ALDH1A3 contribute to anophthalmia in a non-consanguineous Chinese family. Genet Mol Biol 40:430–435.  https://doi.org/10.1590/1678-4685-GMB-2016-0120 CrossRefPubMedPubMedCentralGoogle Scholar
  154. Llorente-Gonzalez S, Peralta-Calvo J, Abelairas-Gomez JM (2011) Congenital anophthalmia and microphthalmia: epidemiology and orbitofacial rehabilitation. Clin Ophthalmol 5:1759–1765.  https://doi.org/10.2147/OPTH.S27189 CrossRefPubMedPubMedCentralGoogle Scholar
  155. London NJ, Kessler P, Williams B, Pauer GJ, Hagstrom SA, Traboulsi EI (2009) Sequence alterations in RX in patients with microphthalmia, anophthalmia, and coloboma. Mol Vis 15:162–167PubMedPubMedCentralGoogle Scholar
  156. Loosli F, Staub W, Finger-Baier KC, Ober EA, Verkade H, Wittbrodt J, Baier H (2003) Loss of eyes in zebrafish caused by mutation of chokh/rx3. EMBO Rep 4:894–899CrossRefPubMedPubMedCentralGoogle Scholar
  157. Lowry RB, Kohut R, Sibbald B, Rouleau J (2005) Anophthalmia and microphthalmia in the Alberta Congenital Anomalies Surveillance System. Can J Ophthalmol 40:38–44CrossRefPubMedGoogle Scholar
  158. Luo G, Hofmann C, Bronckers AL, Sohocki M, Bradley A, Karsenty G (1995) BMP-7 is an inducer of nephrogenesis, and is also required for eye development and skeletal patterning. Genes Dev 9:2808–2820CrossRefPubMedGoogle Scholar
  159. Ma AS, Grigg JR, Ho G, Prokudin I, Farnsworth E, Holman K, Cheng A, Billson FA, Martin F, Fraser C, Mowat D, Smith J, Christodoulou J, Flaherty M, Bennetts B, Jamieson RV (2016) Sporadic and familial congenital cataracts: mutational spectrum and new diagnoses using next-generation sequencing. Hum Mutat 37:371–384.  https://doi.org/10.1002/humu.22948 CrossRefPubMedPubMedCentralGoogle Scholar
  160. Ma AS, Grigg JR, Prokudin I, Flaherty M, Bennetts B, Jamieson RV (2018) New mutations in GJA8 expand the phenotype to include total sclerocornea. Clin Genet 93:155–159.  https://doi.org/10.1111/cge.13045 CrossRefPubMedGoogle Scholar
  161. Mann I (1953) The developmental basis of eye malformations. JB Lippincott, PhiladelphiaGoogle Scholar
  162. Marcadier JL, Mears AJ, Woods EA, Fisher J, Airheart C, Qin W, Beaulieu CL, Dyment DA, Innes AM, Curry CJ, Care4Rare Canada Consortium (2016) A novel mutation in two Hmong families broadens the range of STRA6-related malformations to include contractures and camptodactyly. Am J Med Genet A 170A:11–18.  https://doi.org/10.1002/ajmg.a.37389 CrossRefPubMedGoogle Scholar
  163. Mathers PH, Grinberg A, Mahon KA, Jamrich M (1997) The Rx homeobox gene is essential for vertebrate eye development. Nature 387:603–607CrossRefPubMedGoogle Scholar
  164. Matias-Perez D, Garcia-Montano LA, Cruz-Aguilar M, Garcia-Montalvo IA, Nava-Valdez J, Barragan-Arevalo T, Villanueva-Mendoza C, Villarroel CE, Guadarrama-Vallejo C, la Cruz RV, Chacon-Camacho O, Zenteno JC (2018) Identification of novel pathogenic variants and novel gene-phenotype correlations in Mexican subjects with microphthalmia and/or anophthalmia by next-generation sequencing. J Hum Genet 63:1169–1180.  https://doi.org/10.1038/s10038-018-0504-1 CrossRefPubMedGoogle Scholar
  165. Matsushita I, Kondo H, Tawara A (2012) Novel compound heterozygous mutations in the MFRP gene in a Japanese patient with posterior microphthalmos. Jpn J Ophthalmol 56:396–400.  https://doi.org/10.1007/s10384-012-0145-4 CrossRefPubMedGoogle Scholar
  166. Medina-Trillo C, Aroca-Aguilar JD, Mendez-Hernandez CD, Morales L, Garcia-Anton M, Garcia-Feijoo J, Escribano J (2016) Rare FOXC1 variants in congenital glaucoma: identification of translation regulatory sequences. Eur J Hum Genet 24:672–680.  https://doi.org/10.1038/ejhg.2015.169 CrossRefPubMedGoogle Scholar
  167. Micheal S, Siddiqui SN, Zafar SN, Iqbal A, Khan MI, den Hollander AI (2016) Identification of novel variants in LTBP2 and PXDN using whole-exome sequencing in developmental and congenital glaucoma. PLoS One 11:e0159259.  https://doi.org/10.1371/journal.pone.0159259 CrossRefPubMedPubMedCentralGoogle Scholar
  168. Miesfeld JB, Gestri G, Clark BS, Flinn MA, Poole RJ, Bader JR, Besharse JC, Wilson SW, Link BA (2015) Yap and Taz regulate retinal pigment epithelial cell fate. Development 142:3021–3032.  https://doi.org/10.1242/dev.119008 CrossRefPubMedPubMedCentralGoogle Scholar
  169. Mihelec M, Abraham P, Gibson K, Krowka R, Susman R, Storen R, Chen Y, Donald J, Tam PP, Grigg JR, Flaherty M, Gole GA, Jamieson RV (2009) Novel SOX2 partner-factor domain mutation in a four-generation family. Eur J Hum Genet 17:1417–1422CrossRefPubMedPubMedCentralGoogle Scholar
  170. Ming JE, Kaupas ME, Roessler E, Brunner HG, Golabi M, Tekin M, Stratton RF, Sujansky E, Bale SJ, Muenke M (2002) Mutations in PATCHED-1, the receptor for SONIC HEDGEHOG, are associated with holoprosencephaly. Hum Genet 110:297–301.  https://doi.org/10.1007/s00439-002-0695-5 CrossRefPubMedGoogle Scholar
  171. Morrison D, FitzPatrick D, Hanson I, Williamson K, van Heyningen V, Fleck B, Jones I, Chalmers J, Campbell H (2002) National study of microphthalmia, anophthalmia, and coloboma (MAC) in Scotland: investigation of genetic aetiology. J Med Genet 39:16–22CrossRefPubMedPubMedCentralGoogle Scholar
  172. Mory A, Ruiz FX, Dagan E, Yakovtseva EA, Kurolap A, Pares X, Farres J, Gershoni-Baruch R (2014) A missense mutation in ALDH1A3 causes isolated microphthalmia/anophthalmia in nine individuals from an inbred Muslim kindred. Eur J Hum Genet 22:419–422CrossRefPubMedGoogle Scholar
  173. Mukhopadhyay R, Sergouniotis PI, Mackay DS, Day AC, Wright G, Devery S, Leroy BP, Robson AG, Holder GE, Li Z, Webster AR (2010) A detailed phenotypic assessment of individuals affected by MFRP-related oculopathy. Mol Vis 16:540–548PubMedPubMedCentralGoogle Scholar
  174. Nair KS, Hmani-Aifa M, Ali Z, Kearney AL, Ben Salem S, Macalinao DG, Cosma IM, Bouassida W, Hakim B, Benzina Z, Soto I, Soderkvist P, Howell GR, Smith RS, Ayadi H, John SW (2011) Alteration of the serine protease PRSS56 causes angle-closure glaucoma in mice and posterior microphthalmia in humans and mice. Nat Genet 43:579–584.  https://doi.org/10.1038/ng.813 CrossRefPubMedPubMedCentralGoogle Scholar
  175. Ng WY, Pasutto F, Bardakjian TM, Wilson MJ, Watson G, Schneider A, Mackey DA, Grigg JR, Zenker M, Jamieson RV (2013) A puzzle over several decades: eye anomalies with FRAS1 and STRA6 mutations in the same family. Clin Genet 83:162–168.  https://doi.org/10.1111/j.1399-0004.2012.01851.x CrossRefPubMedGoogle Scholar
  176. Niceta M, Stellacci E, Gripp KW, Zampino G, Kousi M, Anselmi M, Traversa A, Ciolfi A, Stabley D, Bruselles A, Caputo V, Cecchetti S, Prudente S, Fiorenza MT, Boitani C, Philip N, Niyazov D, Leoni C, Nakane T, Keppler-Noreuil K, Braddock SR, Gillessen-Kaesbach G, Palleschi A, Campeau PM, Lee BH, Pouponnot C, Stella L, Bocchinfuso G, Katsanis N, Sol-Church K, Tartaglia M (2015) Mutations impairing GSK3-mediated MAF phosphorylation cause cataract, deafness, intellectual disability, seizures, and a Down syndrome-like facies. Am J Hum Genet 96:816–825.  https://doi.org/10.1016/j.ajhg.2015.03.001 CrossRefPubMedPubMedCentralGoogle Scholar
  177. Nowilaty SR, Khan AO, Aldahmesh MA, Tabbara KF, Al-Amri A, Alkuraya FS (2013) Biometric and molecular characterization of clinically diagnosed posterior microphthalmos. Am J Ophthalmol 155:361–372 e7.  https://doi.org/10.1016/j.ajo.2012.08.016 CrossRefPubMedGoogle Scholar
  178. Oatts JT, Hull S, Michaelides M, Arno G, Webster AR, Moore AT (2017) Novel heterozygous mutation in YAP1 in a family with isolated ocular colobomas. Ophthalmic Genet 38:281–283.  https://doi.org/10.1080/13816810.2016.1188122 CrossRefPubMedGoogle Scholar
  179. Ormestad M, Blixt A, Churchill A, Martinsson T, Enerback S, Carlsson P (2002) Foxe3 haploinsufficiency in mice: a model for Peters’ anomaly. Investig Ophthalmol Vis Sci 43:1350–1357Google Scholar
  180. Orr A, Dube MP, Zenteno JC, Jiang H, Asselin G, Evans SC, Caqueret A, Lakosha H, Letourneau L, Marcadier J, Matsuoka M, Macgillivray C, Nightingale M, Papillon-Cavanagh S, Perry S, Provost S, Ludman M, Guernsey DL, Samuels ME (2011) Mutations in a novel serine protease PRSS56 in families with nanophthalmos. Mol Vis 17:1850–1861PubMedPubMedCentralGoogle Scholar
  181. Pantoja-Melendez C, Ali M, Zenteno JC (2013) An epidemiological investigation of a Forkhead box protein E3 founder mutation underlying the high frequency of sclerocornea, aphakia, and microphthalmia in a Mexican village. Mol Vis 19:1866–1870PubMedPubMedCentralGoogle Scholar
  182. Pasutto F, Sticht H, Hammersen G, Gillessen-Kaesbach G, Fitzpatrick DR, Nurnberg G, Brasch F, Schirmer-Zimmermann H, Tolmie JL, Chitayat D, Houge G, Fernandez-Martinez L, Keating S, Mortier G, Hennekam RC, von der Wense A, Slavotinek A, Meinecke P, Bitoun P, Becker C, Nurnberg P, Reis A, Rauch A (2007) Mutations in STRA6 cause a broad spectrum of malformations including anophthalmia, congenital heart defects, diaphragmatic hernia, alveolar capillary dysplasia, lung hypoplasia, and mental retardation. Am J Hum Genet 80:550–560CrossRefPubMedPubMedCentralGoogle Scholar
  183. Patat O, van Ravenswaaij-Arts CMA, Tantau J, Corsten-Janssen N, van Tintelen JP, Dijkhuizen T, Kaplan J, Chassaing N (2013) Otocephaly–dysgnathia complex: description of four cases and confirmation of the role of OTX2. Mol Syndromol 4:302–305PubMedPubMedCentralGoogle Scholar
  184. Patel N, Khan AO, Alsahli S, Abdel-Salam G, Nowilaty SR, Mansour AM, Nabil A, Al-Owain M, Sogati S, Salih MA, Kamal AM, Alsharif H, Alsaif HS, Alzahrani SS, Abdulwahab F, Ibrahim N, Hashem M, Faquih T, Shah ZA, Abouelhoda M, Monies D, Dasouki M, Shaheen R, Wakil SM, Aldahmesh MA, Alkuraya FS (2018) Genetic investigation of 93 families with microphthalmia or posterior microphthalmos. Clin Genet 93:1210–1222.  https://doi.org/10.1111/cge.13239 CrossRefPubMedGoogle Scholar
  185. Perveen R, Favor J, Jamieson RV, Ray DW, Black GC (2007) A heterozygous c-Maf transactivation domain mutation causes congenital cataract and enhances target gene activation. Hum Mol Genet 16:1030–1038.  https://doi.org/10.1093/hmg/ddm048 CrossRefPubMedGoogle Scholar
  186. Plaisancie J, Bremond-Gignac D, Demeer B, Gaston V, Verloes A, Fares-Taie L, Gerber S, Rozet JM, Calvas P, Chassaing N (2016a) Incomplete penetrance of biallelic ALDH1A3 mutations. Eur J Med Genet 59:215–218.  https://doi.org/10.1016/j.ejmg.2016.02.004 CrossRefPubMedGoogle Scholar
  187. Plaisancie J, Calvas P, Chassaing N (2016b) Genetic Advances in Microphthalmia. J Pediatr Genet 5:184–188.  https://doi.org/10.1055/s-0036-1592350 CrossRefPubMedPubMedCentralGoogle Scholar
  188. Plaisancie J, Ragge NK, Dollfus H, Kaplan J, Lehalle D, Francannet C, Morin G, Colineaux H, Calvas P, Chassaing N (2018a) FOXE3 mutations: genotype–phenotype correlations. Clin Genet 93:837–845.  https://doi.org/10.1111/cge.13177 CrossRefPubMedGoogle Scholar
  189. Plaisancie J, Tarilonte M, Ramos P, Jeanton-Scaramouche C, Gaston V, Dollfus H, Aguilera D, Kaplan J, Fares-Taie L, Blanco-Kelly F, Villaverde C, Francannet C, Goldenberg A, Arroyo I, Rozet JM, Ayuso C, Chassaing N, Calvas P, Corton M (2018b) Implication of non-coding PAX6 mutations in aniridia. Hum Genet 137:831–846.  https://doi.org/10.1007/s00439-018-1940-x CrossRefPubMedGoogle Scholar
  190. Platzer K, Huning I, Obieglo C, Schwarzmayr T, Gabriel R, Strom TM, Gillessen-Kaesbach G, Kaiser FJ (2014) Exome sequencing identifies compound heterozygous mutations in C12orf57 in two siblings with severe intellectual disability, hypoplasia of the corpus callosum, chorioretinal coloboma, and intractable seizures. Am J Med Genet A 164A:1976–1980.  https://doi.org/10.1002/ajmg.a.36592 CrossRefPubMedGoogle Scholar
  191. Prasov L, Masud T, Khaliq S, Mehdi SQ, Abid A, Oliver ER, Silva ED, Lewanda A, Brodsky MC, Borchert M, Kelberman D, Sowden JC, Dattani MT, Glaser T (2012) ATOH7 mutations cause autosomal recessive persistent hyperplasia of the primary vitreous. Hum Mol Genet 21:3681–3694CrossRefPubMedPubMedCentralGoogle Scholar
  192. Prokudin I, Simons C, Grigg JR, Storen R, Kumar V, Phua ZY, Smith J, Flaherty M, Davila S, Jamieson RV (2014) Exome sequencing in developmental eye disease leads to identification of causal variants in GJA8, CRYGC, PAX6 and CYP1B1. Eur J Hum Genet 22:907–915.  https://doi.org/10.1038/ejhg.2013.268 CrossRefPubMedGoogle Scholar
  193. Raca G, Jackson CA, Kucinskas L, Warman B, Shieh JT, Schneider A, Bardakjian TM, Schimmenti LA (2011) Array comparative genomic hybridization analysis in patients with anophthalmia, microphthalmia, and coloboma. Genet Med 13:437–442CrossRefPubMedPubMedCentralGoogle Scholar
  194. Ragge NK, Brown AG, Poloschek CM, Lorenz B, Henderson RA, Clarke MP, Russell-Eggitt I, Fielder A, Gerrelli D, Martinez-Barbera JP, Ruddle P, Hurst J, Collin JR, Salt A, Cooper ST, Thompson PJ, Sisodiya SM, Williamson KA, Fitzpatrick DR, van Heyningen V, Hanson IM (2005a) Heterozygous mutations of OTX2 cause severe ocular malformations. Am J Hum Genet 76:1008–1022CrossRefPubMedPubMedCentralGoogle Scholar
  195. Ragge NK, Lorenz B, Schneider A, Bushby K, de Sanctis L, de Sanctis U, Salt A, Collin JR, Vivian AJ, Free SL, Thompson P, Williamson KA, Sisodiya SM, van Heyningen V, Fitzpatrick DR (2005b) SOX2 anophthalmia syndrome. Am J Med Genet A 135:1–7 (discussion 8) CrossRefPubMedGoogle Scholar
  196. Ragge NK, Salt A, Collin JR, Michalski A, Farndon PA (2005c) Gorlin syndrome: the PTCH gene links ocular developmental defects and tumour formation. Br J Ophthalmol 89:988–991.  https://doi.org/10.1136/bjo.2004.061390 CrossRefPubMedPubMedCentralGoogle Scholar
  197. Ragge NK, Subak-Sharpe ID, Collin JR (2007) A practical guide to the management of anophthalmia and microphthalmia. Eye (Lond) 21:1290–1300.  https://doi.org/10.1038/sj.eye.6702858 CrossRefGoogle Scholar
  198. Ragge NK, Quaghebeur G, Stewart H (2013) SOX2 anophthalmia syndrome in adulthood - a neurodegenerative picture? Clin Genet 83:482–484.  https://doi.org/10.1111/j.1399-0004.2012.01922.x CrossRefPubMedGoogle Scholar
  199. Rainger J, Pehlivan D, Johansson S, Bengani H, Sanchez-Pulido L, Williamson KA, Ture M, Barker H, Rosendahl K, Spranger J, Horn D, Meynert A, Floyd JA, Prescott T, Anderson CA, Rainger JK, Karaca E, Gonzaga-Jauregui C, Jhangiani S, Muzny DM, Seawright A, Soares DC, Kharbanda M, Murday V, Finch A, Mendelian G, Gibbs RA, van Heyningen V, Taylor MS, Yakut T, Knappskog PM, Hurles ME, Ponting CP, Lupski JR, Houge G, FitzPatrick DR, Uk10K, Baylor-Hopkins Center for Mendelian Genomics (2014) Monoallelic and biallelic mutations in MAB21L2 cause a spectrum of major eye malformations. Am J Hum Genet 94:915–923.  https://doi.org/10.1016/j.ajhg.2014.05.005 CrossRefPubMedPubMedCentralGoogle Scholar
  200. Ravine D, Ragge NK, Stephens D, Oldridge M, Wilkie AO (1997) Dominant coloboma-microphthalmos syndrome associated with sensorineural hearing loss, hematuria, and cleft lip/palate. Am J Med Genet 72:227–236CrossRefPubMedGoogle Scholar
  201. Reis LM, Tyler RC, Schneider A, Bardakjian T, Stoler JM, Melancon SB, Semina EV (2010) FOXE3 plays a significant role in autosomal recessive microphthalmia. Am J Med Genet A 152A:582–590CrossRefPubMedPubMedCentralGoogle Scholar
  202. Reis LM, Khan A, Kariminejad A, Ebadi F, Tyler RC, Semina EV (2011a) VSX2 mutations in autosomal recessive microphthalmia. Mol Vis 17:2527–2532PubMedPubMedCentralGoogle Scholar
  203. Reis LM, Tyler RC, Schilter KF, Abdul-Rahman O, Innis JW, Kozel BA, Schneider AS, Bardakjian TM, Lose EJ, Martin DM, Broeckel U, Semina EV (2011b) BMP4 loss-of-function mutations in developmental eye disorders including SHORT syndrome. Hum Genet 130:495–504CrossRefPubMedPubMedCentralGoogle Scholar
  204. Renwick JH, Lawler SD (1963) Probable linkage between a congenital cataract locus and the duffy blood group locus. Ann Hum Genet 27:67–84CrossRefPubMedGoogle Scholar
  205. Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J, Grody WW, Hegde M, Lyon E, Spector E, Voelkerding K, Rehm HL, Committee ALQA (2015) Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med 17:405–424.  https://doi.org/10.1038/gim.2015.30 CrossRefPubMedPubMedCentralGoogle Scholar
  206. Riera M, Wert A, Nieto I, Pomares E (2017) Panel-based whole exome sequencing identifies novel mutations in microphthalmia and anophthalmia patients showing complex Mendelian inheritance patterns. Mol Genet Genomic Med 5:709–719.  https://doi.org/10.1002/mgg3.329 CrossRefPubMedPubMedCentralGoogle Scholar
  207. Roos L, Fang M, Dali CI, Jensen H, Christoffersen N, Wu B, Zhang J, Xu R, Harris P, Xu X, Gronskov K, Tumer Z (2014) A homozygous mutation in a consanguineous family consolidates the role of ALDH1A3 in autosomal recessive microphthalmia. Clin Genet 86:276–281CrossRefPubMedGoogle Scholar
  208. Roos L, Jensen H, Gronskov K, Holst R, Tumer Z (2016) Congenital microphthalmia, anophthalmia and coloboma among live births in Denmark. Ophthalmic Epidemiol 23:324–330.  https://doi.org/10.1080/09286586.2016.1213859 CrossRefPubMedGoogle Scholar
  209. Saboo US, Penke D, Mahindrakar A, Uddaraju M, Sankurathri C, Gong X, Xing C, Mootha VV (2017) Exome sequencing reveals novel homozygous FOXE3 mutation in microphthalmos with staphylomatous malformation. Ophthalmic Genet 38:295–297.  https://doi.org/10.1080/13816810.2016.1217549 CrossRefPubMedGoogle Scholar
  210. Said MB, Chouchene E, Salem SB, Daoud K, Largueche L, Bouassida W, Benzina Z, Ayadi H, Soderkvist P, Matri L, Hmani-Aifa M (2013) Posterior microphthalmia and nanophthalmia in Tunisia caused by a founder c.1059_1066insC mutation of the PRSS56 gene. Gene 528:288–294.  https://doi.org/10.1016/j.gene.2013.06.045 CrossRefPubMedGoogle Scholar
  211. Saison C, Helias V, Peyrard T, Merad L, Cartron JP, Arnaud L (2013) The ABCB6 mutation p.Arg192Trp is a recessive mutation causing the Lan− blood type. Vox Sang 104:159–165.  https://doi.org/10.1111/j.1423-0410.2012.01650.x CrossRefPubMedGoogle Scholar
  212. Salih MA, Tzschach A, Oystreck DT, Hassan HH, AlDrees A, Elmalik SA, El Khashab HY, Wienker TF, Abu-Amero KK, Bosley TM (2013) A newly recognized autosomal recessive syndrome affecting neurologic function and vision. Am J Med Genet A 161:1207–1213CrossRefGoogle Scholar
  213. Salt A, Sargent J (2014) Common visual problems in children with disability. Arch Dis Child 99:1163–1168.  https://doi.org/10.1136/archdischild-2013-305267 CrossRefPubMedPubMedCentralGoogle Scholar
  214. Schilter KF, Schneider A, Bardakjian T, Soucy JF, Tyler RC, Reis LM, Semina EV (2011) OTX2 microphthalmia syndrome: four novel mutations and delineation of a phenotype. Clin Genet 79:158–168CrossRefPubMedPubMedCentralGoogle Scholar
  215. Schilter KF, Reis LM, Schneider A, Bardakjian TM, Abdul-Rahman O, Kozel BA, Zimmerman HH, Broeckel U, Semina EV (2013) Whole-genome copy number variation analysis in anophthalmia and microphthalmia. Clin Genet 84:473–481.  https://doi.org/10.1111/cge.12202 CrossRefPubMedPubMedCentralGoogle Scholar
  216. Schmidt-Sidor B, Szymanska K, Williamson K, van Heyningen V, Roszkowski T, Wierzba-Bobrowicz T, Zaremba J (2009) Malformations of the brain in two fetuses with a compound heterozygosity for two PAX6 mutations. Folia Neuropathol 47:372–382PubMedGoogle Scholar
  217. Schneider A, Bardakjian T, Reis LM, Tyler RC, Semina EV (2009) Novel SOX2 mutations and genotype–phenotype correlation in anophthalmia and microphthalmia. Am J Med Genet A 149A:2706–2715CrossRefPubMedPubMedCentralGoogle Scholar
  218. Seeliger MW, Biesalski HK, Wissinger B, Gollnick H, Gielen S, Frank J, Beck S, Zrenner E (1999) Phenotype in retinol deficiency due to a hereditary defect in retinol binding protein synthesis. Investig Ophthalmol Vis Sci 40:3–11Google Scholar
  219. Seller MJ, Davis TB, Fear CN, Flinter FA, Ellis I, Gibson AG (1996) Two sibs with anophthalmia and pulmonary hypoplasia (the Matthew-Wood syndrome). Am J Med Genet 62:227–229.  https://doi.org/10.1002/(SICI)1096-8628(19960329)62:3%3C227::AID-AJMG5%3E3.0.CO;2-Q CrossRefPubMedGoogle Scholar
  220. Semerci CN, Kalay E, Yildirim C, Dincer T, Olmez A, Toraman B, Kocyigit A, Bulgu Y, Okur V, Satiroglu-Tufan L, Akarsu NA (2014) Novel splice-site and missense mutations in the ALDH1A3 gene underlying autosomal recessive anophthalmia/microphthalmia. Br J Ophthalmol 98:832–840.  https://doi.org/10.1136/bjophthalmol-2013-304058 CrossRefPubMedGoogle Scholar
  221. Semina EV, Ferrell RE, Mintz-Hittner HA, Bitoun P, Alward WL, Reiter RS, Funkhauser C, Daack-Hirsch S, Murray JC (1998) A novel homeobox gene PITX3 is mutated in families with autosomal-dominant cataracts and ASMD. Nat Genet 19:167–170.  https://doi.org/10.1038/527 CrossRefGoogle Scholar
  222. Semina EV, Brownell I, Mintz-Hittner HA, Murray JC, Jamrich M (2001) Mutations in the human forkhead transcription factor FOXE3 associated with anterior segment ocular dysgenesis and cataracts. Hum Mol Genet 10:231–236CrossRefPubMedGoogle Scholar
  223. Seo E, Basu-Roy U, Gunaratne PH, Coarfa C, Lim DS, Basilico C, Mansukhani A (2013) SOX2 regulates YAP1 to maintain stemness and determine cell fate in the osteo-adipo lineage. Cell Rep 3:2075–2087.  https://doi.org/10.1016/j.celrep.2013.05.029 CrossRefPubMedPubMedCentralGoogle Scholar
  224. Serikaku MA, O’Tousa JE (1994) sine oculis is a homeobox gene required for Drosophila visual system development. Genetics 138:1137–1150PubMedPubMedCentralGoogle Scholar
  225. Shah SP, Taylor AE, Sowden JC, Ragge N, Russell-Eggitt I, Rahi JS, Gilbert CE (2011a) Anophthalmos, microphthalmos, and Coloboma in the United kingdom: clinical features, results of investigations, and early management. Ophthalmology 119:362–368CrossRefPubMedGoogle Scholar
  226. Shah SP, Taylor AE, Sowden JC, Ragge NK, Russell-Eggitt I, Rahi JS, Gilbert CE, Surveillance of Eye Anomalies Special Interest Group (2011b) Anophthalmos, microphthalmos, and typical coloboma in the United Kingdom: a prospective study of incidence and risk. Investig Ophthalmol Vis Sci 52:558–564.  https://doi.org/10.1167/iovs.10-5263 CrossRefGoogle Scholar
  227. Shi X, Luo Y, Howley S, Dzialo A, Foley S, Hyde DR, Vihtelic TS (2006) Zebrafish foxe3: roles in ocular lens morphogenesis through interaction with pitx3. Mech Dev 123:761–782.  https://doi.org/10.1016/j.mod.2006.07.004 CrossRefPubMedGoogle Scholar
  228. Shiels A, Mackay D, Ionides A, Berry V, Moore A, Bhattacharya S (1998) A missense mutation in the human connexin50 gene (GJA8) underlies autosomal dominant “zonular pulverulent” cataract, on chromosome 1q. Am J Hum Genet 62:526–532.  https://doi.org/10.1086/301762 CrossRefPubMedPubMedCentralGoogle Scholar
  229. Shima H, Ishii A, Wada Y, Kizawa J, Yokoi T, Azuma N, Matsubara Y, Suzuki E, Nakamura A, Narumi S, Fukami M (2017) SOX2 nonsense mutation in a patient clinically diagnosed with non-syndromic hypogonadotropic hypogonadism. Endocr J 64:813–817.  https://doi.org/10.1507/endocrj.EJ17-0078 CrossRefPubMedGoogle Scholar
  230. Slavotinek AM (2011) Eye development genes and known syndromes. Mol Genet Metab 104:448–456CrossRefPubMedPubMedCentralGoogle Scholar
  231. Slavotinek A (2018) Genetics of anophthalmia and microphthalmia. Part 2: Syndromes associated with anophthalmia–microphthalmia. Hum Genet.  https://doi.org/10.1007/s00439-018-1949-1 CrossRefPubMedGoogle Scholar
  232. Slavotinek AM, Chao R, Vacik T, Yahyavi M, Abouzeid H, Bardakjian T, Schneider A, Shaw G, Sherr EH, Lemke G, Youssef M, Schorderet DF (2012) VAX1 mutation associated with microphthalmia, corpus callosum agenesis, and orofacial clefting: the first description of a VAX1 phenotype in humans. Hum Mutat 33:364–368CrossRefPubMedGoogle Scholar
  233. Slavotinek AM, Garcia ST, Chandratillake G, Bardakjian T, Ullah E, Wu D, Umeda K, Lao R, Tang PL, Wan E, Madireddy L, Lyalina S, Mendelsohn BA, Dugan S, Tirch J, Tischler R, Harris J, Clark MJ, Chervitz S, Patwardhan A, West JM, Ursell P, de Alba Campomanes A, Schneider A, Kwok PY, Baranzini S, Chen RO (2015) Exome sequencing in 32 patients with anophthalmia/microphthalmia and developmental eye defects. Clin Genet 88:468–473.  https://doi.org/10.1111/cge.12543 CrossRefPubMedPubMedCentralGoogle Scholar
  234. Small KW, DeLuca AP, Whitmore SS, Rosenberg T, Silva-Garcia R, Udar N, Puech B, Garcia CA, Rice TA, Fishman GA, Héon E, Folk JC, Streb LM, Haas CM, Wiley LA, Scheetz TE, Fingert JH, Mullins RF, Tucker BA, Stone EM (2016) North Carolina macular dystrophy is caused by dysregulation of the retinal transcription factor PRDM13. Ophthalmology 123:9–18.  https://doi.org/10.1016/j.ophtha.2015.10.006 CrossRefPubMedGoogle Scholar
  235. Solomon BD, Pineda-Alvarez DE, Balog JZ, Hadley D, Gropman AL, Nandagopal R, Han JC, Hahn JS, Blain D, Brooks B, Muenke M (2009) Compound heterozygosity for mutations in PAX6 in a patient with complex brain anomaly, neonatal diabetes mellitus, and microophthalmia. Am J Med Genet A 149A:2543–2546CrossRefPubMedPubMedCentralGoogle Scholar
  236. Somashekar PH, Shukla A, Girisha KM (2017) Intrafamilial variability in syndromic microphthalmia type 5 caused by a novel variation in OTX2. Ophthalmic Genet 38:533–536.  https://doi.org/10.1080/13816810.2017.1301967 CrossRefPubMedGoogle Scholar
  237. Spagnolo A, Bianchi F, Calabro A, Calzolari E, Clementi M, Mastroiacovo P, Meli P, Petrelli G, Tenconi R (1994) Anophthalmia and benomyl in Italy: a multicenter study based on 940,615 newborns. Reprod Toxicol 8:397–403CrossRefPubMedGoogle Scholar
  238. Srour M, Chitayat D, Caron V, Chassaing N, Bitoun P, Patry L, Cordier MP, Capo-Chichi JM, Francannet C, Calvas P, Ragge N, Dobrzeniecka S, Hamdan FF, Rouleau GA, Tremblay A, Michaud JL (2013) Recessive and dominant mutations in retinoic acid receptor beta in cases with microphthalmia and diaphragmatic hernia. Am J Hum Genet 93:765–772.  https://doi.org/10.1016/j.ajhg.2013.08.014 CrossRefPubMedPubMedCentralGoogle Scholar
  239. Srour M, Caron V, Pearson T, Nielsen SB, Levesque S, Delrue MA, Becker TA, Hamdan FF, Kibar Z, Sattler SG, Schneider MC, Bitoun P, Chassaing N, Rosenfeld JA, Xia F, Desai S, Roeder E, Kimonis V, Schneider A, Littlejohn RO, Douzgou S, Tremblay A, Michaud JL (2016) Gain-of-function mutations in RARB cause intellectual disability with progressive motor impairment. Hum Mutat 37:786–793.  https://doi.org/10.1002/humu.23004 CrossRefPubMedGoogle Scholar
  240. Stenson PD, Mort M, Ball EV, Evans K, Hayden M, Heywood S, Hussain M, Phillips AD, Cooper DN (2017) The Human Gene Mutation Database: towards a comprehensive repository of inherited mutation data for medical research, genetic diagnosis and next-generation sequencing studies. Hum Genet 136:665–677.  https://doi.org/10.1007/s00439-017-1779-6 CrossRefPubMedPubMedCentralGoogle Scholar
  241. Stigloher C, Ninkovic J, Laplante M, Geling A, Tannhauser B, Topp S, Kikuta H, Becker TS, Houart C, Bally-Cuif L (2006) Segregation of telencephalic and eye-field identities inside the zebrafish forebrain territory is controlled by Rx3. Development 133:2925–2935.  https://doi.org/10.1242/dev.02450 CrossRefPubMedGoogle Scholar
  242. Stromland K (2004) Visual impairment and ocular abnormalities in children with fetal alcohol syndrome. Addict Biol 9:153–157 (discussion 159–60) CrossRefPubMedGoogle Scholar
  243. Stromland K, Miller MT (1993) Thalidomide embryopathy: revisited 27 years later. Acta Ophthalmol (Copenh) 71:238–245CrossRefGoogle Scholar
  244. Stromland K, Miller M, Cook C (1991) Ocular teratology. Surv Ophthalmol 35:429–446CrossRefPubMedGoogle Scholar
  245. Suhardjo, Utomo PT, Agni AN (2003) Clinical manifestations of ocular toxoplasmosis in Yogyakarta, Indonesia: a clinical review of 173 cases. Southeast Asian J Trop Med Public Health 34:291–297PubMedGoogle Scholar
  246. Summers KM, Withers SJ, Gole GA, Piras S, Taylor PJ (2008) Anterior segment mesenchymal dysgenesis in a large Australian family is associated with the recurrent 17 bp duplication in PITX3. Mol Vis 14:2010–2015PubMedPubMedCentralGoogle Scholar
  247. Sun W, Zhang Q (2015) Does the association between TMEM98 and nanophthalmos require further confirmation? JAMA Ophthalmol 133:358–359.  https://doi.org/10.1001/jamaophthalmol.2014.4915 CrossRefPubMedGoogle Scholar
  248. Sundin OH (2005) The mouse’s eye and Mfrp: not quite human. Ophthalmic Genet 26:153–155.  https://doi.org/10.1080/13816810500374359 CrossRefPubMedGoogle Scholar
  249. Sundin OH, Leppert GS, Silva ED, Yang JM, Dharmaraj S, Maumenee IH, Santos LC, Parsa CF, Traboulsi EI, Broman KW, Dibernardo C, Sunness JS, Toy J, Weinberg EM (2005) Extreme hyperopia is the result of null mutations in MFRP, which encodes a Frizzled-related protein. Proc Natl Acad Sci USA 102:9553–9558.  https://doi.org/10.1073/pnas.0501451102 CrossRefPubMedGoogle Scholar
  250. Tajima T, Ishizu K, Nakamura A (2013) Molecular and clinical findings in patients with LHX4 and OTX2 mutations. Clin Pediatr Endocrinol 22:15–23CrossRefPubMedPubMedCentralGoogle Scholar
  251. Take-uchi M, Clarke JD, Wilson SW (2003) Hedgehog signalling maintains the optic stalk-retinal interface through the regulation of Vax gene activity. Development 130:955–968CrossRefPubMedGoogle Scholar
  252. Temtamy SA, Salam MA, Aboul-Ezz EH, Hussein HA, Helmy SA, Shalash BA (1996) New autosomal recessive multiple congenital abnormalities/mental retardation syndrome with craniofacial dysmorphism absent corpus callosum, iris colobomas and connective tissue dysplasia. Clin Dysmorphol 5:231–240CrossRefPubMedGoogle Scholar
  253. Tucker S, Jones B, Collin R (1996) Systemic anomalies in 77 patients with congenital anophthalmos or microphthalmos. Eye (Lond) 10(Pt 3):310–314.  https://doi.org/10.1038/eye.1996.65 CrossRefGoogle Scholar
  254. Tzoulaki I, White IM, Hanson IM (2005) PAX6 mutations: genotype–phenotype correlations. BMC Genet 6:27CrossRefPubMedPubMedCentralGoogle Scholar
  255. Ullah E, Nadeem Saqib MA, Sajid S, Shah N, Zubair M, Khan MA, Ahmed I, Ali G, Dutta AK, Danda S, Lao R, Ling-Fung Tang P, Kwok PY, Ansar M, Slavotinek A (2016) Genetic analysis of consanguineous families presenting with congenital ocular defects. Exp Eye Res 146:163–171.  https://doi.org/10.1016/j.exer.2016.03.014 CrossRefPubMedGoogle Scholar
  256. Ullah E, Wu D, Madireddy L, Lao R, Ling-Fung Tang P, Wan E, Bardakjian T, Kopinsky S, Kwok PY, Schneider A, Baranzini S, Ansar M, Slavotinek A (2017) Two missense mutations in SALL4 in a patient with microphthalmia, coloboma, and optic nerve hypoplasia. Ophthalmic Genet 38:371–375.  https://doi.org/10.1080/13816810.2016.1217550 CrossRefPubMedGoogle Scholar
  257. Valleix S, Niel F, Nedelec B, Algros MP, Schwartz C, Delbosc B, Delpech M, Kantelip B (2006) Homozygous nonsense mutation in the FOXE3 gene as a cause of congenital primary aphakia in humans. Am J Hum Genet 79:358–364CrossRefPubMedPubMedCentralGoogle Scholar
  258. Velez G, Tsang SH, Tsai YT, Hsu CW, Gore A, Abdelhakim AH, Mahajan M, Silverman RH, Sparrow JR, Bassuk AG, Mahajan VB (2017) Gene therapy restores mfrp and corrects axial eye length. Sci Rep 7:16151.  https://doi.org/10.1038/s41598-017-16275-8 CrossRefPubMedPubMedCentralGoogle Scholar
  259. Verdin H, Sorokina EA, Meire F, Casteels I, de Ravel T, Semina EV, De Baere E (2014) Novel and recurrent PITX3 mutations in Belgian families with autosomal dominant congenital cataract and anterior segment dysgenesis have similar phenotypic and functional characteristics. Orphanet J Rare Dis 9:26.  https://doi.org/10.1186/1750-1172-9-26 CrossRefPubMedPubMedCentralGoogle Scholar
  260. Verma AS, Fitzpatrick DR (2007) Anophthalmia and microphthalmia. Orphanet J Rare Dis 2:47CrossRefPubMedPubMedCentralGoogle Scholar
  261. Vincent MC, Pujo AL, Olivier D, Calvas P (2003) Screening for PAX6 gene mutations is consistent with haploinsufficiency as the main mechanism leading to various ocular defects. Eur J Hum Genet 11:163–169CrossRefPubMedGoogle Scholar
  262. Volkmann BA, Zinkevich NS, Mustonen A, Schilter KF, Bosenko DV, Reis LM, Broeckel U, Link BA, Semina EV (2011) Potential novel mechanism for Axenfeld-Rieger syndrome: deletion of a distant region containing regulatory elements of PITX2. Investig Ophthalmol Vis Sci 52:1450–1459.  https://doi.org/10.1167/iovs.10-6060 CrossRefGoogle Scholar
  263. Voronina VA, Kozhemyakina EA, O’Kernick CM, Kahn ND, Wenger SL, Linberg JV, Schneider AS, Mathers PH (2004) Mutations in the human RAX homeobox gene in a patient with anophthalmia and sclerocornea. Hum Mol Genet 13:315–322CrossRefGoogle Scholar
  264. Wang SW, Kim BS, Ding K, Wang H, Sun D, Johnson RL, Klein WH, Gan L (2001) Requirement for math5 in the development of retinal ganglion cells. Genes Dev 15:24–29CrossRefPubMedPubMedCentralGoogle Scholar
  265. Wang P, Liang X, Yi J, Zhang Q (2008) Novel SOX2 mutation associated with ocular coloboma in a Chinese family. Arch Ophthalmol 126:709–713CrossRefPubMedGoogle Scholar
  266. Wang L, He F, Bu J, Zhen Y, Liu X, Du W, Dong J, Cooney JD, Dubey SK, Shi Y, Gong B, Li J, McBride PF, Jia Y, Lu F, Soltis KA, Lin Y, Namburi P, Liang C, Sundaresan P, Paw BH, Li W, Li DY, Phillips JD, Yang Z (2012) ABCB6 mutations cause ocular coloboma. Am J Hum Genet 90:40–48.  https://doi.org/10.1016/j.ajhg.2011.11.026 CrossRefPubMedPubMedCentralGoogle Scholar
  267. Warburg M (1993) Classification of microphthalmos and coloboma. J Med Genet 30:664–669CrossRefPubMedPubMedCentralGoogle Scholar
  268. Ward SJ, Morriss-Kay GM (1997) The functional basis of tissue-specific retinoic acid signalling in embryos. Semin Cell Dev Biol 8:429–435.  https://doi.org/10.1006/scdb.1997.0166 CrossRefPubMedGoogle Scholar
  269. Ward SJ, Chambon P, Ong DE, Bavik C (1997) A retinol-binding protein receptor-mediated mechanism for uptake of vitamin A to postimplantation rat embryos. Biol Reprod 57:751–755CrossRefPubMedGoogle Scholar
  270. Wasmann RA, Wassink-Ruiter JS, Sundin OH, Morales E, Verheij JB, Pott JW (2014) Novel membrane frizzled-related protein gene mutation as cause of posterior microphthalmia resulting in high hyperopia with macular folds. Acta Ophthalmol 92:276–281.  https://doi.org/10.1111/aos.12105 CrossRefPubMedGoogle Scholar
  271. Wawersik S, Purcell P, Rauchman M, Dudley AT, Robertson EJ, Maas R (1999) BMP7 acts in murine lens placode development. Dev Biol 207:176–188.  https://doi.org/10.1006/dbio.1998.9153 CrossRefPubMedGoogle Scholar
  272. Weber S, Taylor JC, Winyard P, Baker KF, Sullivan-Brown J, Schild R, Knuppel T, Zurowska AM, Caldas-Alfonso A, Litwin M, Emre S, Ghiggeri GM, Bakkaloglu A, Mehls O, Antignac C, Network E, Schaefer F, Burdine RD (2008) SIX2 and BMP4 mutations associate with anomalous kidney development. J Am Soc Nephrol 19:891–903.  https://doi.org/10.1681/ASN.2006111282 CrossRefPubMedPubMedCentralGoogle Scholar
  273. Williamson KA, Hever AM, Rainger J, Rogers RC, Magee A, Fiedler Z, Keng WT, Sharkey FH, McGill N, Hill CJ, Schneider A, Messina M, Turnpenny PD, Fantes JA, van Heyningen V, FitzPatrick DR (2006) Mutations in SOX2 cause anophthalmia–esophageal–genital (AEG) syndrome. Hum Mol Genet 15:1413–1422CrossRefPubMedGoogle Scholar
  274. Williamson KA, Rainger J, Floyd JA, Ansari M, Meynert A, Aldridge KV, Rainger JK, Anderson CA, Moore AT, Hurles ME, Clarke A, van Heyningen V, Verloes A, Taylor MS, Wilkie AO, Consortium UK, Fitzpatrick DR (2014) Heterozygous loss-of-function mutations in YAP1 cause both isolated and syndromic optic fissure closure defects. Am J Hum Genet 94:295–302.  https://doi.org/10.1016/j.ajhg.2014.01.001 CrossRefPubMedPubMedCentralGoogle Scholar
  275. Winkler S, Loosli F, Henrich T, Wakamatsu Y, Wittbrodt J (2000) The conditional medaka mutation eyeless uncouples patterning and morphogenesis of the eye. Development 127:1911–1919PubMedGoogle Scholar
  276. Wong RL, Chow KL (2002) Depletion of Mab21l1 and Mab21l2 messages in mouse embryo arrests axial turning, and impairs notochord and neural tube differentiation. Teratology 65:70–77.  https://doi.org/10.1002/tera.10018 CrossRefPubMedGoogle Scholar
  277. Wyatt AW, Ragge N (2009) MLGA: a cost-effective approach to the diagnosis of gene deletions in eye development anomalies. Mol Vis 15:1445–1448PubMedPubMedCentralGoogle Scholar
  278. Wyatt A, Bakrania P, Bunyan DJ, Osborne RJ, Crolla JA, Salt A, Ayuso C, Newbury-Ecob R, Abou-Rayyah Y, Collin JR, Robinson D, Ragge N (2008) Novel heterozygous OTX2 mutations and whole gene deletions in anophthalmia, microphthalmia and coloboma. Hum Mutat 29:E278–E283CrossRefPubMedGoogle Scholar
  279. Wyatt AW, Osborne RJ, Stewart H, Ragge NK (2010) Bone morphogenetic protein 7 (BMP7) mutations are associated with variable ocular, brain, ear, palate, and skeletal anomalies. Hum Mutat 31:781–787CrossRefPubMedGoogle Scholar
  280. Yahyavi M, Abouzeid H, Gawdat G, de Preux AS, Xiao T, Bardakjian T, Schneider A, Choi A, Jorgenson E, Baier H, El Sada M, Schorderet DF, Slavotinek AM (2013) ALDH1A3 loss of function causes bilateral anophthalmia/microphthalmia and hypoplasia of the optic nerve and optic chiasm. Hum Mol Genet 22:3250–3258CrossRefPubMedPubMedCentralGoogle Scholar
  281. Yamada R, Mizutani-Koseki Y, Hasegawa T, Osumi N, Koseki H, Takahashi N (2003) Cell-autonomous involvement of Mab21l1 is essential for lens placode development. Development 130:1759–1770CrossRefPubMedGoogle Scholar
  282. Yan X, Sabrautzki S, Horsch M, Fuchs H, Gailus-Durner V, Beckers J, Hrabe de Angelis M, Graw J (2014) Peroxidasin is essential for eye development in the mouse. Hum Mol Genet 23:5597–5614.  https://doi.org/10.1093/hmg/ddu274 CrossRefPubMedPubMedCentralGoogle Scholar
  283. Yariz KO, Sakalar YB, Jin X, Hertz J, Sener EF, Akay H, Ozbek MN, Farooq A, Goldberg J, Tekin M (2015) A homozygous SIX6 mutation is associated with optic disc anomalies and macular atrophy and reduces retinal ganglion cell differentiation. Clin Genet 87:192–195.  https://doi.org/10.1111/cge.12374 CrossRefPubMedGoogle Scholar
  284. Ye M, Berry-Wynne KM, Asai-Coakwell M, Sundaresan P, Footz T, French CR, Abitbol M, Fleisch VC, Corbett N, Allison WT, Drummond G, Walter MA, Underhill TM, Waskiewicz AJ, Lehmann OJ (2010) Mutation of the bone morphogenetic protein GDF3 causes ocular and skeletal anomalies. Hum Mol Genet 19:287–298.  https://doi.org/10.1093/hmg/ddp496 CrossRefPubMedGoogle Scholar
  285. Young TR, Leamey CA (2009) Teneurins: important regulators of neural circuitry. Int J Biochem Cell Biol 41:990–993.  https://doi.org/10.1016/j.biocel.2008.06.014 CrossRefPubMedGoogle Scholar
  286. Zahrani F, Aldahmesh MA, Alshammari MJ, Al-Hazzaa SA, Alkuraya FS (2013) Mutations in c12orf57 cause a syndromic form of colobomatous microphthalmia. Am J Hum Genet 92:387–391CrossRefPubMedPubMedCentralGoogle Scholar
  287. Zazo Seco C, Plaisancie J, Lupasco T, Michot C, Pechmeja J, Delanne J, Cottereau E, Ayuso C, Corton M, Calvas P, Ragge N, Chassaing N (2018) Identification of PITX3 mutations in individuals with various ocular developmental defects. Ophthalmic Genet 39:314–320.  https://doi.org/10.1080/13816810.2018.1430243 CrossRefPubMedGoogle Scholar
  288. Zenteno JC, Perez-Cano HJ, Aguinaga M (2006) Anophthalmia–esophageal atresia syndrome caused by an SOX2 gene deletion in monozygotic twin brothers with markedly discordant phenotypes. Am J Med Genet A 140:1899–1903CrossRefPubMedGoogle Scholar
  289. Zenteno JC, Buentello-Volante B, Quiroz-Gonzalez MA, Quiroz-Reyes MA (2009) Compound heterozygosity for a novel and a recurrent MFRP gene mutation in a family with the nanophthalmos-retinitis pigmentosa complex. Mol Vis 15:1794–1798PubMedPubMedCentralGoogle Scholar
  290. Zhang X, Li S, Xiao X, Jia X, Wang P, Shen H, Guo X, Zhang Q (2009) Mutational screening of 10 genes in Chinese patients with microphthalmia and/or coloboma. Mol Vis 15:2911–2918PubMedPubMedCentralGoogle Scholar
  291. Zhang C, Li D, Zhang J, Chen X, Huang M, Archacki S, Tian Y, Ren W, Mei A, Zhang Q, Fang M, Su Z, Yin Y, Liu D, Chen Y, Cui X, Li C, Yang H, Wang Q, Wang J, Liu M, Deng Y (2013) Mutations in ABCB6 cause dyschromatosis universalis hereditaria. J Investig Dermatol 133:2221–2228.  https://doi.org/10.1038/jid.2013.145 CrossRefPubMedGoogle Scholar
  292. Zouvelou V, Luder HU, Mitsiadis TA, Graf D (2009) Deletion of BMP7 affects the development of bones, teeth, and other ectodermal appendages of the orofacial complex. J Exp Zool B Mol Dev Evol 312B:361–374.  https://doi.org/10.1002/jez.b.21262 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • J. Plaisancié
    • 1
    • 2
    • 3
  • F. Ceroni
    • 4
  • R. Holt
    • 4
  • C. Zazo Seco
    • 3
  • P. Calvas
    • 1
    • 2
    • 3
  • N. Chassaing
    • 1
    • 2
    • 3
  • Nicola K. Ragge
    • 4
    • 5
    Email author
  1. 1.Service de Génétique Médicale, Hôpital PurpanCHU ToulouseToulouseFrance
  2. 2.Centre de référence des Anomalies Rares en Génétique Ophtalmologique (CARGO)ToulouseFrance
  3. 3.INSERM U1056Université Toulouse IIIToulouseFrance
  4. 4.Faculty of Health and Life SciencesOxford Brookes UniversityOxfordUK
  5. 5.West Midlands Regional Genetics ServiceBirmingham Women and Children’s NHS Foundation TrustBirminghamUK

Personalised recommendations