Advertisement

Gene therapies in canine models for Duchenne muscular dystrophy

  • Peter P. NghiemEmail author
  • Joe N. Kornegay
Original Investigation
Part of the following topical collections:
  1. Canine Genetics
  2. Canine Genetics

Abstract

Therapies for Duchenne muscular dystrophy (DMD) must first be tested in animal models to determine proof-of-concept, efficacy, and importantly, safety. The murine and canine models for DMD are genetically homologous and most commonly used in pre-clinical testing. Although the mouse is a strong, proof-of-concept model, affected dogs show more analogous clinical and immunological disease progression compared to boys with DMD. As such, evaluating genetic therapies in the canine models may better predict response at the genetic, phenotypic, and immunological levels. We review the use of canine models for DMD and their benefits as it pertains to genetic therapy studies, including gene replacement, exon skipping, and gene editing.

Notes

Acknowledgements

We acknowledge Sara Mata López, Dr. Sharla Birch, Amanda Bettis, and Cynthia Balog-Alvarez for their work with the GRMD model.

Compliance with ethical standards

Conflict of interest

Dr. Nghiem is a paid consultant for Agada Biosciences. Dr. Kornegay does not have any conflicts of interest.

References

  1. Aartsma-Rus A et al (2006) Entries in the Leiden Duchenne muscular dystrophy mutation database: an overview of mutation types and paradoxical cases that confirm the reading-frame rule. Muscle Nerve 34(2):135–144 (review) Google Scholar
  2. Acosta AR et al (2016) Use of the six-minute walk test to characterize golden retriever muscular dystrophy. Neuromuscul Disord 26(12):865–872Google Scholar
  3. Amoasii L et al (2018) Gene editing restores dystrophin expression in a canine model of Duchenne muscular dystrophy. Science 362(6410):86–91Google Scholar
  4. Aoki Y et al (2012) Bodywide skipping of exons 45–55 in dystrophic mdx52 mice by systemic antisense delivery. Proc Natl Acad Sci USA 109(34):13763–13768Google Scholar
  5. Beltran WA et al (2012) Gene therapy rescues photoreceptor blindness in dogs and paves the way for treating human X-linked retinitis pigmentosa. Proc Natl Acad Sci USA 109(6):2132–2137Google Scholar
  6. Bengtsson NE et al (2017) Corrigendum: muscle-specific CRISPR/Cas9 dystrophin gene editing ameliorates pathophysiology in a mouse model for Duchenne muscular dystrophy. Nat Commun 8:16007Google Scholar
  7. Birch SM et al (2017) A blinded, placebo-controlled systemic gene therapy efficacy study in the GRMD model of Duchenne muscular dystrophy. Mol Ther 25:193Google Scholar
  8. Bladen CL et al (2015) The TREAT-NMD DMD Global Database: analysis of more than 7,000 Duchenne muscular dystrophy mutations. Hum Mutat 36(4):395–402Google Scholar
  9. Bradbury AM et al (2018) AAVrh10 gene therapy ameliorates central and peripheral nervous system disease in canine globoid cell leukodystrophy (Krabbe disease). Hum Gene Ther 29(7):785–801Google Scholar
  10. Bulfield G et al (1984) X chromosome-linked muscular dystrophy (mdx) in the mouse. Proc Natl Acad Sci USA 81(4):1189–1192Google Scholar
  11. Callan MB et al (2016) Successful phenotype improvement following gene therapy for severe hemophilia A in privately owned dogs. PLoS One 11(3):e0151800Google Scholar
  12. Deconinck N et al (1996) Functional protection of dystrophic mouse (mdx) muscles after adenovirus-mediated transfer of a dystrophin minigene. Proc Natl Acad Sci USA 93:3570–3574Google Scholar
  13. Dowling P et al (2004) Drastic reduction of sarcalumenin in Dp427 (dystrophin of 427 kDa)-deficient fibres indicates that abnormal calcium handling plays a key role in muscular dystrophy. Biochem J 379(Pt 2):479–488Google Scholar
  14. Echigoya Y, Yokota T (2014) Skipping multiple exons of dystrophin transcripts using cocktail antisense oligonucleotides. Nucleic Acid Ther 24(1):57–68Google Scholar
  15. Echigoya Y et al (2015) In silico screening based on predictive algorithms as a design tool for exon skipping oligonucleotides in Duchenne muscular dystrophy. PLoS One 10(3):e0120058Google Scholar
  16. Echigoya Y et al (2017) Effects of systemic multiexon skipping with peptide-conjugated morpholinos in the heart of a dog model of Duchenne muscular dystrophy. Proc Natl Acad Sci USA 114(16):4213–4218Google Scholar
  17. Fan Z et al (2014) Characteristics of magnetic resonance imaging biomarkers in a natural history study of golden retriever muscular dystrophy. Neuromuscul Disord 24(2):178–191Google Scholar
  18. Fletcher S et al (2010) Dystrophin isoform induction in vivo by antisense-mediated alternative splicing. Mol Ther 18(6):1218–1223Google Scholar
  19. Gilbert R et al (2003) Prolonged dystrophin expression and functional correction of mdx mouse muscle following gene transfer with a helper-dependent (gutted) adenovirus-encoding murine dystrophin. Hum Mol Genet 12:1287–1299Google Scholar
  20. Gregorevic P et al (2008) Systemic microdystrophin gene delivery improves skeletal muscle structure and function in old dystrophic mdx mice. Mol Ther 16:657–664Google Scholar
  21. Grimm T et al (2012) Risk assessment and genetic counseling in families with Duchenne muscular dystrophy. Acta Myol 31(3):179–183Google Scholar
  22. Hoffman EP et al (1987) Dystrophin: the protein product of the Duchenne muscular dystrophy locus. Cell 51(6):919–928Google Scholar
  23. Howell JM et al (1998a) Direct dystrophin and reporter gene transfer into dog muscle in vivo. Muscle Nerve 21(2):159–165Google Scholar
  24. Howell JM et al (1998b) High-level dystrophin expression after adenovirus-mediated dystrophin minigene transfer to skeletal muscle of dystrophic dogs: prolongation of expression with immunosuppression. Hum Gene Ther 9(5):629–634Google Scholar
  25. Jearawiriyapaisarn N et al (2008) Sustained dystrophin expression induced by peptide-conjugated morpholino oligomers in the muscles of mdx mice. Mol Ther 16(9):1624–1629Google Scholar
  26. Jooss K et al (1998) Transduction of dendritic cells by DNA viral vectors directs the immune response to transgene products in muscle fibers. J Virol 72:4212–4223Google Scholar
  27. Komaki H et al (2018) Systemic administration of the antisense oligonucleotide NS-065/NCNP-01 for skipping of exon 53 in patients with Duchenne muscular dystrophy. Sci Transl Med.  https://doi.org/10.1126/scitranslmed.aan0713 Google Scholar
  28. Kornegay JN (2017) The golden retriever model of Duchenne muscular dystrophy. Skelet Muscle 7(1):9. (review) Google Scholar
  29. Kornegay JN et al (1988) Muscular dystrophy in a litter of golden retriever dogs. Muscle Nerve 11(10):1056–1064Google Scholar
  30. Kornegay JN et al (2010) Widespread muscle expression of an AAV9 human mini-dystrophin vector after intravenous injection in neonatal dystrophin-deficient dogs. Mol Ther 18(8):1501–1508Google Scholar
  31. Kornegay JN et al (2012) Canine models of Duchenne muscular dystrophy and their use in therapeutic strategies. Mamm Genome 23(1–2):85–108 (review) Google Scholar
  32. Kornegay JN et al (2014) Pharmacologic management of Duchenne muscular dystrophy: target identification and preclinical trials. ILAR J 55(1):119–149 (review) Google Scholar
  33. Landis SC et al (2012) A call for transparent reporting to optimize the predictive value of preclinical research. Nature 490(7491):187–191Google Scholar
  34. Le Guiner C et al (2017) Long-term microdystrophin gene therapy is effective in a canine model of Duchenne muscular dystrophy. Nat Commun 8:16105Google Scholar
  35. Long C et al (2016) Postnatal genome editing partially restores dystrophin expression in a mouse model of muscular dystrophy. Science 351(6271):400–403Google Scholar
  36. Lu QL et al (2003) Functional amounts of dystrophin produced by skipping the mutated exon in the mdx dystrophic mouse. Nat Med 9(8):1009–1014Google Scholar
  37. Matthews E et al (2016) Corticosteroids for the treatment of Duchenne muscular dystrophy. Cochrane Database Syst Rev 5:CD003725Google Scholar
  38. Monaco AP et al (1988) An explanation for the phenotypic differences between patients bearing partial deletions of the DMD locus. Genomics 2(1):90–95Google Scholar
  39. Nachman MW (2004) Haldane and the first estimates of the human mutation rate. J Genet 83(3):231–233 (Erratum in: J Genet. 2008 Dec;87(3):317) Google Scholar
  40. Nichols TC et al (2016) Canine models of inherited bleeding disorders in the development of coagulation assays, novel protein replacement and gene therapies. J Thromb Haemost 14(5):894–905Google Scholar
  41. Ousterout DG et al (2013) Reading frame correction by targeted genome editing restores dystrophin expression in cells from Duchenne muscular dystrophy patients. Mol Ther 21(9):1718–1726 (Erratum in Mol Ther. 21(11):2130) Google Scholar
  42. Patronek GJ et al (1997) Comparative longevity of pet dogs and humans: implications for gerontology research. J Gerontol A Biol Sci Med Sci 52(3):B171–B178Google Scholar
  43. Ragot T et al (1993) Efficient adenovirus-mediated transfer of a human minidystrophin gene to skeletal muscle of mdx mice. Nature 361:647–650Google Scholar
  44. Ramos J, Chamberlain JS (2015) Gene therapy for Duchenne muscular dystrophy. Expert Opin Orphan Drugs 3:1255–1266Google Scholar
  45. Schatzberg SJ et al (1999) Molecular analysis of a spontaneous dystrophin ‘knockout’ dog. Neuromuscul Disord 9(5):289–295Google Scholar
  46. Schneider SM et al (2018) Glucose metabolism as a pre-clinical biomarker for the golden retriever model of Duchenne muscular dystrophy. Mol Imaging Biol 20(5):780–788Google Scholar
  47. Shimatsu Y et al (2003) Canine X-linked muscular dystrophy in Japan (CXMDJ). Exp Anim 52:93–97Google Scholar
  48. Shimo T et al (2018) Designing effective antisense oligonucleotides for exon skipping. Methods Mol Biol 1687:143–155Google Scholar
  49. Sicinski P et al (1989) The molecular basis of muscular dystrophy in the mdx mouse: a point mutation. Science 244(4912):1578–1580Google Scholar
  50. Sneddon LU et al (2017) Considering aspects of the 3Rs principles within experimental animal biology. J Exp Biol 220(Pt 17):3007–3016Google Scholar
  51. Suzuki K et al (2016) In vivo genome editing via CRISPR/Cas9 mediated homology-independent targeted integration. Nature 540(7631):144–149Google Scholar
  52. Tabebordbar M et al (2016) In vivo gene editing in dystrophic mouse muscle and muscle stem cells. Science 351(6271):407–411Google Scholar
  53. Wang Z et al (2007a) Immunity to adeno-associated virus-mediated gene transfer in a random-bred canine model of Duchenne muscular dystrophy. Hum Gene Ther 18(1):18–26Google Scholar
  54. Wang Z et al (2007b) Sustained AAV-mediated dystrophin expression in a canine model of Duchenne muscular dystrophy with a brief course of immunosuppression. Mol Ther 15(6):1160–1166Google Scholar
  55. Wang Z et al Chamberlain JS, Tapscott SJ, Storb R (2009) Gene therapy in large animal models of muscular dystrophy. ILAR J 50(2):187–198. ReviewGoogle Scholar
  56. Willmann R et al (2015) Best practices and standard protocols as a tool to enhance translation for neuromuscular disorders. J Neuromuscul Dis 2(2):113–117Google Scholar
  57. Wirth T et al (2013) History of gene therapy. Gene 525(2):162–169Google Scholar
  58. Wu B et al (2009) Octa-guanidine morpholino restores dystrophin expression in cardiac and skeletal muscles and ameliorates pathology in dystrophic mdx mice. Mol Ther 17(5):864–871Google Scholar
  59. Xiao X et al (1996) Efficient long-term gene transfer into muscle tissue of immunocompetent mice by adeno-associated virus vector. J Virol 70:8098–8108Google Scholar
  60. Yokota T et al (2007) Optimizing exon skipping therapies for DMD. Acta Myol 26(3):179–184. ReviewGoogle Scholar
  61. Yokota T et al (2009) Efficacy of systemic morpholino exon-skipping in Duchenne dystrophy dogs. Ann Neurol 65(6):667–676Google Scholar
  62. Yokota T et al (2012) Extensive and prolonged restoration of dystrophin expression with vivo-morpholino-mediated multiple exon skipping in dystrophic dogs. Nucleic Acid Ther 22(5):306–315Google Scholar
  63. Yue Y et al (2015) Safe and bodywide muscle transduction in young adult Duchenne muscular dystrophy dogs with adeno-associated virus. Hum Mol Genet 24(20):5880–5890Google Scholar
  64. Zhang Y et al (2017) CRISPR-Cpf1 correction of muscular dystrophy mutations in human cardiomyocytes and mice. Sci Adv 3(4):e1602814Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical SciencesTexas A&M UniversityCollege StationUSA

Personalised recommendations