Advertisement

Whole-exome sequencing reveals SALL4 variants in premature ovarian insufficiency: an update on genotype–phenotype correlations

  • Qiqi Wang
  • Da Li
  • Baozhu Cai
  • Qing Chen
  • Caihua Li
  • Yanhua Wu
  • Li Jin
  • Xiuxia Wang
  • Xiaojin ZhangEmail author
  • Feng ZhangEmail author
Original Investigation

Abstract

Premature ovarian insufficiency (POI) is a severe female disorder characterized by primary or secondary amenorrhea before 40 years of age. Genetic factors have been implicated in the pathogenesis of POI, but known POI-associated genes account for only a small fraction of heritability. Here, we performed whole-exome sequencing (WES) to explore pathogenic genes in Han Chinese subjects with POI. Intriguingly, we identified novel or rare heterozygous missense variants of SALL4 (spalt-like transcription factor 4) in 3 (6%) of 50 POI subjects. The SALL4 c.541G>A and c.2279C>T variants were paternally inherited, while c.1790A>G was inherited from an affected mother with early menopause. SALL4 encodes a transcription factor that is highly expressed in oocytes and early embryos. Our in vitro functional assays suggested that all of these SALL4 missense variants had significantly increased SALL4 protein expression with enhanced regulatory activity in regard to its downstream target POU5F1 compared to that of wild-type SALL4. Notably, previous studies demonstrated the genetic involvement of SALL4 loss-of-function variants in Okihiro syndrome and related syndromic developmental disorders. Through our analysis of genotype–phenotype correlations, we suggest that different variation types of SALL4 might have different effects on SALL4 activity, resulting in phenotypic variability. Our findings highlight the genetic contribution of SALL4 missense variants with enhanced regulatory activities to POI and underscore the importance of variant classification and evaluation for molecular diagnosis and genetic counseling.

Notes

Acknowledgements

We are grateful to the subjects and their families who participated in this study. We also thank Shuxia Chen for experimental support. This work was supported by National Key Research and Development Program of China (2017YFC1001100), National Natural Science Foundation of China (31625015 and 31521003), Shanghai Medical Center of Key Programs for Female Reproductive Diseases (2017ZZ01016), and Shanghai Municipal Science and Technology Major Project (2017SHZDZX01).

Compliance with ethical standards

Conflict of interest

The authors declare no conflicts of interest.

Supplementary material

439_2018_1962_MOESM1_ESM.pdf (84 kb)
Supplementary material 1 (PDF 84 KB)
439_2018_1962_MOESM2_ESM.pdf (7 kb)
Supplementary material 2 (PDF 7 KB)
439_2018_1962_MOESM3_ESM.xlsx (26 kb)
Supplementary material 3 (XLSX 25 KB)
439_2018_1962_MOESM4_ESM.xlsx (20 kb)
Supplementary material 4 (XLSX 19 KB)
439_2018_1962_MOESM5_ESM.xlsx (22 kb)
Supplementary material 5 (XLSX 22 KB)
439_2018_1962_MOESM6_ESM.xlsx (13 kb)
Supplementary material 6 (XLSX 13 KB)
439_2018_1962_MOESM7_ESM.xlsx (11 kb)
Supplementary material 7 (XLSX 11 KB)
439_2018_1962_MOESM8_ESM.xlsx (14 kb)
Supplementary material 8 (XLSX 13 KB)
439_2018_1962_MOESM9_ESM.pdf (114 kb)
Supplementary material 9 (PDF 113 KB)
439_2018_1962_MOESM10_ESM.pdf (163 kb)
Supplementary material 10 (PDF 162 KB)
439_2018_1962_MOESM11_ESM.pdf (86 kb)
Supplementary material 11 (PDF 86 KB)

References

  1. Adzhubei IA, Schmidt S, Peshkin L, Ramensky VE, Gerasimova A, Bork P, Kondrashov AS, Sunyaev SR (2010) A method and server for predicting damaging missense mutations. Nat Methods 7:248–249.  https://doi.org/10.1038/nmeth0410-248 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Al-Baradie R, Yamada K, St Hilaire C, Chan WM, Andrews C, McIntosh N, Nakano M, Martonyi EJ, Raymond WR, Okumura S, Okihiro MM, Engle EC (2002) Duane radial ray syndrome (Okihiro syndrome) maps to 20q13 and results from mutations in SALL4, a new member of the SAL family. Am J Hum Genet 71:1195–1199.  https://doi.org/10.1086/343821 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Alves LU, Perez AB, Alonso LG, Otto PA, Mingroni-Netto RC (2016) Novel frameshift variant in gene SALL4 causing Okihiro syndrome. Eur J Med Genet 59:80–85.  https://doi.org/10.1016/j.ejmg.2015.12.015 CrossRefPubMedGoogle Scholar
  4. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-Tarver L, Kasarskis A, Lewis S, Matese JC, Richardson JE, Ringwald M, Rubin GM, Sherlock G (2000) Gene ontology: tool for the unification of biology. Nat Genet 25:25–29.  https://doi.org/10.1038/75556 CrossRefPubMedPubMedCentralGoogle Scholar
  5. Bayram Y, Gulsuner S, Guran T, Abaci A, Yesil G, Gulsuner HU, Atay Z, Pierce SB, Gambin T, Lee M, Turan S, Bober E, Atik MM, Walsh T, Karaca E, Pehlivan D, Jhangiani SN, Muzny D, Bereket A, Buyukgebiz A, Boerwinkle E, Gibbs RA, King MC, Lupski JR (2015) Homozygous loss-of-function mutations in SOHLH1 in patients with nonsyndromic hypergonadotropic hypogonadism. J Clin Endocrinol Metab 100:E808–E814.  https://doi.org/10.1210/jc.2015-1150 CrossRefPubMedPubMedCentralGoogle Scholar
  6. Boone PM, Bacino CA, Shaw CA, Eng PA, Hixson PM, Pursley AN, Kang SH, Yang Y, Wiszniewska J, Nowakowska BA, del Gaudio D, Xia Z, Simpson-Patel G, Immken LL, Gibson JB, Tsai AC, Bowers JA, Reimschisel TE, Schaaf CP, Potocki L, Scaglia F, Gambin T, Sykulski M, Bartnik M, Derwinska K, Wisniowiecka-Kowalnik B, Lalani SR, Probst FJ, Bi W, Beaudet AL, Patel A, Lupski JR, Cheung SW, Stankiewicz P (2010) Detection of clinically relevant exonic copy-number changes by array CGH. Hum Mutat 31:1326–1342.  https://doi.org/10.1002/humu.21360 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Borozdin W, Wright MJ, Hennekam RC, Hannibal MC, Crow YJ, Neumann TE, Kohlhase J (2004) Novel mutations in the gene SALL4 provide further evidence for acro-renal-ocular and Okihiro syndromes being allelic entities, and extend the phenotypic spectrum. J Med Genet 41:e102.  https://doi.org/10.1136/jmg.2004.019505 CrossRefPubMedPubMedCentralGoogle Scholar
  8. Brassington AM, Sung SS, Toydemir RM, Le T, Roeder AD, Rutherford AE, Whitby FG, Jorde LB, Bamshad MJ (2003) Expressivity of Holt–Oram syndrome is not predicted by TBX5 genotype. Am J Hum Genet 73:74–85.  https://doi.org/10.1086/376436 CrossRefPubMedPubMedCentralGoogle Scholar
  9. Chacon-Camacho OF, Cabral-Macias J, Ayala-Ramirez R, Arteaga-Vazquez J, Svyryd Y, Helmes K, Perez-Hernandez N, Mutchinick OM, Zenteno JC (2016) Clinical and genetic findings in Mexican patients with Duane anomaly and radial ray malformations/Okihiro syndrome. Rev Investig Clin 68:269–274Google Scholar
  10. Chen Q, Wang QQ, Cai BZ, Ren XJ, Zhang F, Zhang XJ (2017) Analysis of the fragile X mental retardation 1 premutation in Han Chinese women presenting with primary ovarian insufficiency. Reprod Dev Med 1:9–12.  https://doi.org/10.4103/2096-2924.210692 CrossRefGoogle Scholar
  11. Chew JL, Loh YH, Zhang W, Chen X, Tam WL, Yeap LS, Li P, Ang YS, Lim B, Robson P, Ng HH (2005) Reciprocal transcriptional regulation of Pou5f1 and Sox2 via the Oct4/Sox2 complex in embryonic stem cells. Mol Cell Biol 25:6031–6046.  https://doi.org/10.1128/MCB.25.14.6031-6046.2005 CrossRefPubMedPubMedCentralGoogle Scholar
  12. De Vos M, Devroey P, Fauser BC (2010) Primary ovarian insufficiency. Lancet 376:911–921.  https://doi.org/10.1016/S0140-6736(10)60355-8 CrossRefPubMedGoogle Scholar
  13. Goswami D, Conway GS (2005) Premature ovarian failure. Hum Reprod Update 11:391–410.  https://doi.org/10.1093/humupd/dmi012 CrossRefPubMedGoogle Scholar
  14. Guo F, Yan L, Guo H, Li L, Hu B, Zhao Y, Yong J, Hu Y, Wang X, Wei Y, Wang W, Li R, Yan J, Zhi X, Zhang Y, Jin H, Zhang W, Hou Y, Zhu P, Li J, Zhang L, Liu S, Ren Y, Zhu X, Wen L, Gao YQ, Tang F, Qiao J (2015) The transcriptome and DNA methylome landscapes of human primordial germ cells. Cell 161:1437–1452.  https://doi.org/10.1016/j.cell.2015.05.015 CrossRefPubMedGoogle Scholar
  15. Jiao X, Zhang H, Ke H, Zhang J, Cheng L, Liu Y, Qin Y, Chen ZJ (2017) Premature ovarian insufficiency: phenotypic characterization within different etiologies. J Clin Endocrinol Metab 102:2281–2290.  https://doi.org/10.1210/jc.2016-3960 CrossRefPubMedGoogle Scholar
  16. Kanehisa M, Furumichi M, Tanabe M, Sato Y, Morishima K (2017) KEGG: new perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res 45:D353–D361.  https://doi.org/10.1093/nar/gkw1092 CrossRefGoogle Scholar
  17. Kircher M, Witten DM, Jain P, O’Roak BJ, Cooper GM, Shendure J (2014) A general framework for estimating the relative pathogenicity of human genetic variants. Nat Genet 46:310–315.  https://doi.org/10.1038/ng.2892 CrossRefPubMedPubMedCentralGoogle Scholar
  18. Kohlhase J, Heinrich M, Liebers M, Frohlich Archangelo L, Reardon W, Kispert A (2002a) Cloning and expression analysis of SALL4, the murine homologue of the gene mutated in Okihiro syndrome. Cytogenet Genome Res 98:274–277.  https://doi.org/10.1159/000071048 CrossRefPubMedGoogle Scholar
  19. Kohlhase J, Heinrich M, Schubert L, Liebers M, Kispert A, Laccone F, Turnpenny P, Winter RM, Reardon W (2002b) Okihiro syndrome is caused by SALL4 mutations. Hum Mol Genet 11:2979–2987.  https://doi.org/10.1093/hmg/11.23.2979 CrossRefPubMedGoogle Scholar
  20. Kohlhase J, Schubert L, Liebers M, Rauch A, Becker K, Mohammed SN, Newbury-Ecob R, Reardon W (2003) Mutations at the SALL4 locus on chromosome 20 result in a range of clinically overlapping phenotypes, including Okihiro syndrome, Holt–Oram syndrome, acro-renal-ocular syndrome, and patients previously reported to represent thalidomide embryopathy. J Med Genet 40:473–478.  https://doi.org/10.1136/jmg.40.7.473 CrossRefPubMedPubMedCentralGoogle Scholar
  21. Kohlhase J, Chitayat D, Kotzot D, Ceylaner S, Froster UG, Fuchs S, Montgomery T, Rosler B (2005) SALL4 mutations in Okihiro syndrome (Duane-radial ray syndrome), acro-renal-ocular syndrome, and related disorders. Hum Mutat 26:176–183.  https://doi.org/10.1002/humu.20215 CrossRefPubMedGoogle Scholar
  22. Kuhnlein RP, Frommer G, Friedrich M, Gonzalez-Gaitan M, Weber A, Wagner-Bernholz JF, Gehring WJ, Jackle H, Schuh R (1994) spalt encodes an evolutionarily conserved zinc finger protein of novel structure which provides homeotic gene function in the head and tail region of the Drosophila embryo. EMBO J 13:168–179.  https://doi.org/10.1002/j.1460-2075.1994.tb06246.x CrossRefPubMedPubMedCentralGoogle Scholar
  23. Kumar P, Henikoff S, Ng PC (2009) Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm. Nat Protoc 4:1073–1081.  https://doi.org/10.1038/nprot.2009.86 CrossRefGoogle Scholar
  24. Lek M, Karczewski KJ, Minikel EV, Samocha KE, Banks E, Fennell T, O’Donnell-Luria AH, Ware JS, Hill AJ, Cummings BB, Tukiainen T, Birnbaum DP, Kosmicki JA, Duncan LE, Estrada K, Zhao F, Zou J, Pierce-Hoffman E, Berghout J, Cooper DN, Deflaux N, DePristo M, Do R, Flannick J, Fromer M, Gauthier L, Goldstein J, Gupta N, Howrigan D, Kiezun A, Kurki MI, Moonshine AL, Natarajan P, Orozco L, Peloso GM, Poplin R, Rivas MA, Ruano-Rubio V, Rose SA, Ruderfer DM, Shakir K, Stenson PD, Stevens C, Thomas BP, Tiao G, Tusie-Luna MT, Weisburd B, Won HH, Yu D, Altshuler DM, Ardissino D, Boehnke M, Danesh J, Donnelly S, Elosua R, Florez JC, Gabriel SB, Getz G, Glatt SJ, Hultman CM, Kathiresan S, Laakso M, McCarroll S, McCarthy MI, McGovern D, McPherson R, Neale BM, Palotie A, Purcell SM, Saleheen D, Scharf JM, Sklar P, Sullivan PF, Tuomilehto J, Tsuang MT, Watkins HC, Wilson JG, Daly MJ, MacArthur DG (2016) Analysis of protein-coding genetic variation in 60,706 humans. The Exome Aggregation Consortium. Nature 536:285–291.  https://doi.org/10.1038/nature19057 CrossRefPubMedPubMedCentralGoogle Scholar
  25. Li H, Durbin R (2010) Fast and accurate long-read alignment with Burrows–Wheeler transform. Bioinformatics 26:589–595.  https://doi.org/10.1093/bioinformatics/btp698 CrossRefPubMedPubMedCentralGoogle Scholar
  26. Li L, Dong J, Yan L, Yong J, Liu X, Hu Y, Fan X, Wu X, Guo H, Wang X, Zhu X, Li R, Yan J, Wei Y, Zhao Y, Wang W, Ren Y, Yuan P, Yan Z, Hu B, Guo F, Wen L, Tang F, Qiao J (2017a) Single-cell RNA-seq analysis maps development of human germline cells and gonadal niche interactions. Cell Stem Cell 20:858–873 e854.  https://doi.org/10.1016/j.stem.2017.03.007 CrossRefPubMedGoogle Scholar
  27. Li L, Wang B, Zhang W, Chen B, Luo M, Wang J, Wang X, Cao Y, Kee K (2017b) A homozygous NOBOX truncating variant causes defective transcriptional activation and leads to primary ovarian insufficiency. Hum Reprod 32:248–255.  https://doi.org/10.1093/humrep/dew271 CrossRefPubMedGoogle Scholar
  28. McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, Garimella K, Altshuler D, Gabriel S, Daly M, DePristo MA (2010) The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res 20:1297–1303.  https://doi.org/10.1101/gr.107524.110 CrossRefPubMedPubMedCentralGoogle Scholar
  29. McKusick VA (2007) Mendelian Inheritance in Man and its online version, OMIM. Am J Hum Genet 80:588–604.  https://doi.org/10.1086/514346 CrossRefPubMedPubMedCentralGoogle Scholar
  30. Miettinen M, Wang Z, McCue PA, Sarlomo-Rikala M, Rys J, Biernat W, Lasota J, Lee YS (2014) SALL4 expression in germ cell and non-germ cell tumors: a systematic immunohistochemical study of 3215 cases. Am J Surg Pathol 38:410–420.  https://doi.org/10.1097/PAS.0000000000000116 CrossRefPubMedPubMedCentralGoogle Scholar
  31. Nelson LM (2009) Clinical practice. Primary ovarian insufficiency. N Engl J Med 360:606–614.  https://doi.org/10.1056/NEJMcp0808697 CrossRefPubMedPubMedCentralGoogle Scholar
  32. Ponten F, Jirstrom K, Uhlen M (2008) The Human Protein Atlas—a tool for pathology. J Pathol 216:387–393.  https://doi.org/10.1002/path.2440 CrossRefPubMedGoogle Scholar
  33. Qin Y, Jiao X, Simpson JL, Chen ZJ (2015) Genetics of primary ovarian insufficiency: new developments and opportunities. Hum Reprod Update 21:787–808.  https://doi.org/10.1093/humupd/dmv036 CrossRefPubMedPubMedCentralGoogle Scholar
  34. Quang D, Chen Y, Xie X (2015) DANN: a deep learning approach for annotating the pathogenicity of genetic variants. Bioinformatics 31:761–763.  https://doi.org/10.1093/bioinformatics/btu703 CrossRefPubMedGoogle Scholar
  35. Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J, Grody WW, Hegde M, Lyon E, Spector E, Voelkerding K, Rehm HL, Committee ALQA (2015) Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med 17:405–424.  https://doi.org/10.1038/gim.2015.30 CrossRefPubMedPubMedCentralGoogle Scholar
  36. Schwarz JM, Cooper DN, Schuelke M, Seelow D (2014) MutationTaster2: mutation prediction for the deep-sequencing age. Nat Methods 11:361–362.  https://doi.org/10.1038/nmeth.2890 CrossRefPubMedPubMedCentralGoogle Scholar
  37. Sweetman D, Munsterberg A (2006) The vertebrate spalt genes in development and disease. Dev Biol 293:285–293.  https://doi.org/10.1016/j.ydbio.2006.02.009 CrossRefPubMedGoogle Scholar
  38. Terhal P, Rosler B, Kohlhase J (2006) A family with features overlapping Okihiro syndrome, hemifacial microsomia and isolated Duane anomaly caused by a novel SALL4 mutation. Am J Med Genet A 140:222–226.  https://doi.org/10.1002/ajmg.a.31060 CrossRefPubMedGoogle Scholar
  39. The 1000 Genomes Project Consortium, Abecasis GR, Auton A, Brooks LD, DePristo MA, Durbin RM, Handsaker RE, Kang HM, Marth GT, McVean GA (2012) An integrated map of genetic variation from 1,092 human genomes. Nature 491:56–65.  https://doi.org/10.1038/nature11632 CrossRefPubMedPubMedCentralGoogle Scholar
  40. The ESHRE Guideline Group on POI, Webber L, Davies M, Anderson R, Bartlett J, Braat D, Cartwright B, Cifkova R, de Muinck Keizer-Schrama S, Hogervorst E, Janse F, Liao L, Vlaisavljevic V, Zillikens C, Vermeulen N (2016) ESHRE guideline: management of women with premature ovarian insufficiency. Hum Reprod 31:926–937.  https://doi.org/10.1093/humrep/dew027 CrossRefGoogle Scholar
  41. Tucker EJ, Grover SR, Bachelot A, Touraine P, Sinclair AH (2016) Premature ovarian insufficiency: new perspectives on genetic cause and phenotypic spectrum. Endocr Rev 37:609–635.  https://doi.org/10.1210/er.2016-1047 CrossRefPubMedGoogle Scholar
  42. Wang B, Li L, Ni F, Song J, Wang J, Mu Y, Ma X, Cao Y (2009) Mutational analysis of SAL-Like 4 (SALL4) in Han Chinese women with premature ovarian failure. Mol Hum Reprod 15:557–562.  https://doi.org/10.1093/molehr/gap046 CrossRefPubMedGoogle Scholar
  43. Wang K, Li M, Hakonarson H (2010) ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res 38:e164.  https://doi.org/10.1093/nar/gkq603 CrossRefPubMedPubMedCentralGoogle Scholar
  44. Warren M, Wang W, Spiden S, Chen-Murchie D, Tannahill D, Steel KP, Bradley A (2007) A Sall4 mutant mouse model useful for studying the role of Sall4 in early embryonic development and organogenesis. Genesis 45:51–58.  https://doi.org/10.1002/dvg.20264 CrossRefPubMedPubMedCentralGoogle Scholar
  45. Xu K, Chen X, Yang H, Xu Y, He Y, Wang C, Huang H, Liu B, Liu W, Li J, Kou X, Zhao Y, Zhao K, Zhang L, Hou Z, Wang H, Wang H, Li J, Fan H, Wang F, Gao Y, Zhang Y, Chen J, Gao S (2017) Maternal Sall4 is indispensable for epigenetic maturation of mouse oocytes. J Biol Chem 292:1798–1807.  https://doi.org/10.1074/jbc.M116.767061 CrossRefPubMedGoogle Scholar
  46. Yamaguchi YL, Tanaka SS, Kumagai M, Fujimoto Y, Terabayashi T, Matsui Y, Nishinakamura R (2015) Sall4 is essential for mouse primordial germ cell specification by suppressing somatic cell program genes. Stem Cells 33:289–300.  https://doi.org/10.1002/stem.1853 CrossRefPubMedGoogle Scholar
  47. Zhang J, Tam WL, Tong GQ, Wu Q, Chan HY, Soh BS, Lou Y, Yang J, Ma Y, Chai L, Ng HH, Lufkin T, Robson P, Lim B (2006) Sall4 modulates embryonic stem cell pluripotency and early embryonic development by the transcriptional regulation of Pou5f1. Nat Cell Biol 8:1114–1123.  https://doi.org/10.1038/ncb1481 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Obstetrics and Gynecology Hospital, NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), School of Life SciencesFudan UniversityShanghaiChina
  2. 2.Center for Global Health, School of Public HealthNanjing Medical UniversityNanjingChina
  3. 3.Shanghai Key Laboratory of Female Reproductive Endocrine Related DiseasesShanghaiChina
  4. 4.Department of Obstetrics and GynecologyShengjing Hospital of China Medical UniversityShenyangChina
  5. 5.Genesky Biotechnologies Inc.ShanghaiChina

Personalised recommendations