Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Genetics of congenital eye malformations: insights from chick experimental embryology

  • 468 Accesses

  • 1 Citations

Abstract

Embryological manipulations in chick embryos have been pivotal in our understanding of many aspects of vertebrate eye formation. This research was particularly important in uncovering the role of tissue interactions as drivers of eye morphogenesis and to dissect the function of critical genes. Here, we have highlighted a few of these past experiments to endorse their value in searching for hitherto unknown causes of rare congenital eye anomalies, such as microphthalmia, anophthalmia and coloboma. We have also highlighted a number of similarities between the chicken and human eye, which might be exploited to address other eye pathologies, including degenerative ocular diseases.

This is a preview of subscription content, log in to check access.

Fig. 1

References

  1. Adler R, Canto-Soler MV (2007) Molecular mechanisms of optic vesicle development: complexities, ambiguities and controversies. Dev Biol 305:1–13. https://doi.org/10.1016/j.ydbio.2007.01.045

  2. Bakrania P, Ugur Iseri SA, Wyatt AW, Bunyan DJ, Lam WW, Salt A, Ramsay J, Robinson DO, Ragge NK (2010) Sonic hedgehog mutations are an uncommon cause of developmental eye anomalies. Am J Med Genet A 152A:1310–1313. https://doi.org/10.1002/ajmg.a.33239

  3. Beccari L, Marco-Ferreres R, Bovolenta P (2013) The logic of gene regulatory networks in early vertebrate forebrain patterning. Mech Dev 130:95–111. https://doi.org/10.1016/j.mod.2012.10.004

  4. Bovolenta P, Cisneros E (2009) Retinitis pigmentosa: cone photoreceptors starving to death. Nat Neurosci 12:5–6. https://doi.org/10.1038/nn0109-5

  5. Bovolenta P, Mallamaci A, Briata P, Corte G, Boncinelli E (1997) Implication of OTX2 in pigment epithelium determination and neural retina differentiation. J Neurosci 17:4243–4252

  6. Chow RL, Lang RA (2001) Early eye development in vertebrates. Annu Rev Cell Dev Biol 17:255–296. https://doi.org/10.1146/annurev.cellbio.17.1.255

  7. Coulombre AJ, Coulombre JL (1964) Lens development. I. Role of the lens in eye growth. J Exp Zool 156:39–47

  8. Cvekl A, Zhang X (2017) Signaling and gene regulatory networks in mammalian lens development. Trends Genet 33:677–702. https://doi.org/10.1016/j.tig.2017.08.001

  9. da Silva S, Cepko CL (2017) Fgf8 expression and degradation of retinoic acid are required for patterning a high-acuity area in the retina. Dev Cell 42:68–81 e6. https://doi.org/10.1016/j.devcel.2017.05.024

  10. Dakubo GD, Mazerolle C, Furimsky M, Yu C, St-Jacques B, McMahon AP, Wallace VA (2008) Indian hedgehog signaling from endothelial cells is required for sclera and retinal pigment epithelium development in the mouse eye. Dev Biol 320:242–255. https://doi.org/10.1016/j.ydbio.2008.05.528

  11. Eiraku M, Takata N, Ishibashi H, Kawada M, Sakakura E, Okuda S, Sekiguchi K, Adachi T, Sasai Y (2011) Self-organizing optic-cup morphogenesis in three-dimensional culture. Nature 472:51–56. https://doi.org/10.1038/nature09941

  12. Fernandez-Garre P, Rodriguez-Gallardo L, Gallego-Diaz V, Alvarez IS, Puelles L (2002) Fate map of the chicken neural plate at stage 4. Development 129:2807–2822

  13. Fuhrmann S, Zou C, Levine EM (2014) Retinal pigment epithelium development, plasticity, and tissue homeostasis. Exp Eye Res 123:141–150. https://doi.org/10.1016/j.exer.2013.09.003

  14. Gandhi S, Piacentino ML, Vieceli FM, Bronner ME (2017) Optimization of CRISPR/Cas9 genome editing for loss-of-function in the early chick embryo. Dev Biol 432:86–97. https://doi.org/10.1016/j.ydbio.2017.08.036

  15. Gayer K (1942) A study of coloboma and other abnormalities in transplants of eye primordia from normal and Creeper chick embryos. J Exp Zool 89:103–133. https://doi.org/10.1002/jez.1400890105

  16. Gestri G, Bazin-Lopez N, Scholes C, Wilson SW (2018) Cell behaviors during closure of the choroid fissure in the developing eye. Front Cell Neurosci 12:42. https://doi.org/10.3389/fncel.2018.00042

  17. Grajales-Esquivel E, Luz-Madrigal A, Bierly J, Haynes T, Reis ES, Han Z, Gutierrez C, McKinney Z, Tzekou A, Lambris JD, Tsonis PA, Del Rio-Tsonis K (2017) Complement component C3aR constitutes a novel regulator for chick eye morphogenesis. Dev Biol 428:88–100. https://doi.org/10.1016/j.ydbio.2017.05.019

  18. Gregory-Evans CY, Williams MJ, Halford S, Gregory-Evans K (2004) Ocular coloboma: a reassessment in the age of molecular neuroscience. J Med Genet 41:881–891. https://doi.org/10.1136/jmg.2004.025494

  19. Hilfer SR (1983) Development of the eye of the chick embryo. Scan Electron Microsc (Pt 3):1353–1369

  20. Hoshino A, Ratnapriya R, Brooks MJ, Chaitankar V, Wilken MS, Zhang C, Starostik MR, Gieser L, La Torre A, Nishio M, Bates O, Walton A, Bermingham-McDonogh O, Glass IA, Wong ROL, Swaroop A, Reh TA (2017) Molecular anatomy of the developing human retina. Dev Cell 43:763–779 e4. https://doi.org/10.1016/j.devcel.2017.10.029

  21. Hyer J, Mima T, Mikawa T (1998) FGF1 patterns the optic vesicle by directing the placement of the neural retina domain. Development 125:869–877

  22. Hyer J, Kuhlman J, Afif E, Mikawa T (2003) Optic cup morphogenesis requires pre-lens ectoderm but not lens differentiation. Dev Biol 259:351–363

  23. Jin S, Zhu F, Wang Y, Yi G, Li J, Lian L, Zheng J, Xu G, Jiao R, Gong Y, Hou Z, Yang N (2016) Deletion of Indian hedgehog gene causes dominant semi-lethal Creeper trait in chicken. Sci Rep 6:30172. https://doi.org/10.1038/srep30172

  24. Letelier J, Bovolenta P, Martinez-Morales JR (2017) The pigmented epithelium, a bright partner against photoreceptor degeneration. J Neurogenet 31:203–215. https://doi.org/10.1080/01677063.2017.1395876

  25. Marcos S, Gonzalez-Lazaro M, Beccari L, Carramolino L, Martin-Bermejo MJ, Amarie O, Mateos-San Martin D, Torroja C, Bogdanovic O, Doohan R, Puk O, Hrabe de Angelis M, Graw J, Gomez-Skarmeta JL, Casares F, Torres M, Bovolenta P (2015) Meis1 coordinates a network of genes implicated in eye development and microphthalmia. Development 142:3009–3020. https://doi.org/10.1242/dev.122176

  26. Martinez-Morales JR, Signore M, Acampora D, Simeone A, Bovolenta P (2001) Otx genes are required for tissue specification in the developing eye. Development 128:2019–2030

  27. Martinez-Morales JR, Dolez V, Rodrigo I, Zaccarini R, Leconte L, Bovolenta P, Saule S (2003) OTX2 activates the molecular network underlying retina pigment epithelium differentiation. J Biol Chem 278:21721–21731. https://doi.org/10.1074/jbc.M301708200

  28. Martinez-Morales JR, Del Bene F, Nica G, Hammerschmidt M, Bovolenta P, Wittbrodt J (2005) Differentiation of the vertebrate retina is coordinated by an FGF signaling center. Dev Cell 8:565–574. https://doi.org/10.1016/j.devcel.2005.01.022

  29. Morcillo J, Martinez-Morales JR, Trousse F, Fermin Y, Sowden JC, Bovolenta P (2006) Proper patterning of the optic fissure requires the sequential activity of BMP7 and SHH. Development 133:3179–3190. https://doi.org/10.1242/dev.02493

  30. Nakano T, Ando S, Takata N, Kawada M, Muguruma K, Sekiguchi K, Saito K, Yonemura S, Eiraku M, Sasai Y (2012) Self-formation of optic cups and storable stratified neural retina from human ESCs. Cell Stem Cell 10:771–785. https://doi.org/10.1016/j.stem.2012.05.009

  31. Needham J (1959) A history of embryology. Número 374, Volumen 1959. Abelard-Schuman

  32. Nicolas-Perez M, Kuchling F, Letelier J, Polvillo R, Wittbrodt J, Martinez-Morales JR (2016) Analysis of cellular behavior and cytoskeletal dynamics reveal a constriction mechanism driving optic cup morphogenesis. Elife. https://doi.org/10.7554/eLife.15797

  33. Raviv S, Bharti K, Rencus-Lazar S, Cohen-Tayar Y, Schyr R, Evantal N, Meshorer E, Zilberberg A, Idelson M, Reubinoff B, Grebe R, Rosin-Arbesfeld R, Lauderdale J, Lutty G, Arnheiter H, Ashery-Padan R (2014) PAX6 regulates melanogenesis in the retinal pigmented epithelium through feed-forward regulatory interactions with MITF. PLoS Genet 10:e1004360. https://doi.org/10.1371/journal.pgen.1004360

  34. Richardson R, Sowden J, Gerth-Kahlert C, Moore AT, Moosajee M (2017) Clinical utility gene card for: non-syndromic microphthalmia including next-generation sequencing-based approaches. Eur J Hum Genet. https://doi.org/10.1038/ejhg.2016.201

  35. Schimmenti LA, de la Cruz J, Lewis RA, Karkera JD, Manligas GS, Roessler E, Muenke M (2003) Novel mutation in sonic hedgehog in non-syndromic colobomatous microphthalmia. Am J Med Genet A 116A:215–221. https://doi.org/10.1002/ajmg.a.10884

  36. Steinfeld J, Steinfeld I, Bausch A, Coronato N, Hampel ML, Depner H, Layer PG, Vogel-Hopker A (2017) BMP-induced reprogramming of the neural retina into retinal pigment epithelium requires Wnt signalling. Biol Open 6:979–992. https://doi.org/10.1242/bio.018739

  37. Tsukiji N, Nishihara D, Yajima I, Takeda K, Shibahara S, Yamamoto H (2009) Mitf functions as an in ovo regulator for cell differentiation and proliferation during development of the chick RPE. Dev Biol 326:335–346. https://doi.org/10.1016/j.ydbio.2008.11.029

  38. Ullah E, Wu D, Madireddy L, Lao R, Ling-Fung Tang P, Wan E, Bardakjian T, Kopinsky S, Kwok PY, Schneider A, Baranzini S, Ansar M, Slavotinek A (2017) Two missense mutations in SALL4 in a patient with microphthalmia, coloboma, and optic nerve hypoplasia. Ophthalmic Genet 38:371–375. https://doi.org/10.1080/13816810.2016.1217550

  39. Vergara MN, Canto-Soler MV (2012) Rediscovering the chick embryo as a model to study retinal development. Neural Dev 7:22. https://doi.org/10.1186/1749-8104-7-22

  40. Vogel-Hopker A, Momose T, Rohrer H, Yasuda K, Ishihara L, Rapaport DH (2000) Multiple functions of fibroblast growth factor-8 (FGF-8) in chick eye development. Mech Dev 94:25–36

  41. Wang Y, Dakubo GD, Thurig S, Mazerolle CJ, Wallace VA (2005) Retinal ganglion cell-derived sonic hedgehog locally controls proliferation and the timing of RGC development in the embryonic mouse retina. Development 132:5103–5113. https://doi.org/10.1242/dev.02096

  42. Wang Z, Yasugi S, Ishii Y (2016) Chx10 functions as a regulator of molecular pathways controlling the regional identity in the primordial retina. Dev Biol 413:104–111. https://doi.org/10.1016/j.ydbio.2016.03.023

  43. Wen W, Pillai-Kastoori L, Wilson SG, Morris AC (2015) Sox4 regulates choroid fissure closure by limiting Hedgehog signaling during ocular morphogenesis. Dev Biol 399:139–153. https://doi.org/10.1016/j.ydbio.2014.12.026

  44. Westenskow PD, McKean JB, Kubo F, Nakagawa S, Fuhrmann S (2010) Ectopic Mitf in the embryonic chick retina by co-transfection of beta-catenin and Otx2. Investig Ophthalmol Vis Sci 51:5328–5335. https://doi.org/10.1167/iovs.09-5015

  45. Williams RM, Senanayake U, Artibani M, Taylor G, Wells D, Ahmed AA, Sauka-Spengler T (2018) Genome and epigenome engineering CRISPR toolkit for in vivo modulation of cis-regulatory interactions and gene expression in the chicken embryo. Development. https://doi.org/10.1242/dev.160333

  46. Williamson KA, FitzPatrick DR (2014) The genetic architecture of microphthalmia, anophthalmia and coloboma. Eur J Med Genet 57:369–380. https://doi.org/10.1016/j.ejmg.2014.05.002

  47. Wisely CE, Sayed JA, Tamez H, Zelinka C, Abdel-Rahman MH, Fischer AJ, Cebulla CM (2017) The chick eye in vision research: an excellent model for the study of ocular disease. Prog Retin Eye Res 61:72–97. https://doi.org/10.1016/j.preteyeres.2017.06.004

Download references

Acknowledgements

We wish to thank Drs. Linnea Weiss and Nicola Ragge for criticisms and proof-reading the manuscript. Work in our labs is supported by the following grants: MINECO BFU2016-75412-R (including FEDER funds); PCIN-2015-176-C02-01/ERA-Net Neuron II and the CIBERER, ISCIII to PB; MINECO BFU2017-86339P and FEDER-2017 to JRMM; MINECO BFU2016-81887-REDT and Fundación Ramón Areces-2016 to both JRMM and PB and an Institutional Grant to the CBMSO from the Fundación Ramón Areces and Banco Santander.

Author information

Correspondence to Paola Bovolenta.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bovolenta, P., Martinez-Morales, J. Genetics of congenital eye malformations: insights from chick experimental embryology. Hum Genet 138, 1001–1006 (2019). https://doi.org/10.1007/s00439-018-1900-5

Download citation