Skip to main content

Advertisement

Log in

Gene expression studies in cells from primary ciliary dyskinesia patients identify 208 potential ciliary genes

  • Original Investigation
  • Published:
Human Genetics Aims and scope Submit manuscript

Abstract

Cilia are small cellular projections that either act as sensors (primary cilia) or propel fluid over the epithelia of various organs (motile cilia). The organellum has gained much attention lately because of its involvement in a group of human diseases called ciliopathies. Primary ciliary dyskinesia (PCD) is an autosomal recessive ciliopathy caused by mutations in cilia motility genes. The disease is characterized by recurrent respiratory tract infections due to the lack of an efficient mucociliary clearance. We performed whole-genome gene expression profiling in bronchial biopsies from PCD patients. We used the quality threshold clustering algorithm to identify groups of genes that revealed highly correlated RNA expression patterns in the biopsies. The largest cluster contained 372 genes and was significantly enriched for genes related to cilia. The database and literature search showed that 164 genes in this cluster were known cilia genes, strongly indicating that the remaining 208 genes were likely to be new cilia genes. The tissue expression pattern of the 208 new cilia genes and the 164 known genes was consistent with the presence of motile cilia in a given tissue. The analysis of the upstream promotor sequences revealed evidence for RFX transcription factors binding site motif in both subgroups. Based on the correlated expression patterns in PCD-affected tissues, we identified 208 genes that we predict to be involved in cilia biology. Our predictions are based directly on the human material and not on model organisms. This list of genes provides candidate genes for PCD and other ciliopathies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Avidor-Reiss T, Maer AM, Koundakjian E, Polyanovsky A, Keil T et al (2004) Decoding cilia function: defining specialized genes required for compartmentalized cilia biogenesis. Cell 117(4):527–539

    Article  CAS  PubMed  Google Scholar 

  • Badano JL, Mitsuma N, Beales PL, Katsanis N (2006) The ciliopathies: an emerging class of human genetic disorders. Annu Rev Genomics Hum Genet 7:125–148

    Article  CAS  PubMed  Google Scholar 

  • Bartoloni L, Blouin J-L, Pan Y, Gehrig C, Maiti AK, Scamuffa N, Rossier C, Jorissen M, Armengot M, Meeks M, Mitchison HM, Chung EMK, Delozier-Blanchet CD, Craigen WJ, Antonarakis SE (2002) Mutations in the DNAH11 (axonemal heavy chain dynein type 11) gene cause one form of situs inversus totalis and most likely primary ciliary dyskinesia. Proc Nat Acad Sci 99:10282–10286

    Article  CAS  PubMed  Google Scholar 

  • Blacque OE, Perens EA, Boroevich KA, Inglis PN, Li C et al (2005) Functional genomics of the cilium, a sensory organelle. Curr Biol 15(10):935–941

    Article  CAS  PubMed  Google Scholar 

  • Bloodgood RA (2010) Sensory reception is an attribute of both primary cilia and motile cilia. J Cell Sci 123(Pt 4):505–509

    Article  CAS  PubMed  Google Scholar 

  • Blouin JL, Meeks M, Radhakrishna U et al (2000) Primary ciliary dyskinesia: a genome-wide linkage analysis reveals extensive locus heterogeneity. Eur J Hum Genet 8(2):109–118

    Article  CAS  PubMed  Google Scholar 

  • Castleman VH, Romio L, Chodhari R, Hirst RA, de Castro SCP, Parker KA, Ybot-Gonzalez P, Emes RD, Wilson SW, Wallis C, Johnson CA, Herrera RJ et al (2009) Mutations in radial spoke head protein genes RSPH9 and RSPH4A cause primary ciliary dyskinesia with central-microtubular-pair abnormalities. Am J Hum Genet 84:197–209

    Article  CAS  PubMed  Google Scholar 

  • Colecchia F, Kottwitz D, Wagner M, Pfenninger CV, Thiel G, Tamm I, Peterson C, Nuber UA (2009) Tissue-specific regulatory network extractor (TS-REX): a database and software resource for the tissue and cell type-specific investigation of transcription factor-gene networks. Nucleic Acids Res 37(11):e82

    Article  PubMed  Google Scholar 

  • Coppe A, Ferrari F, Bisognin A, Danieli GA, Ferrari S, Bicciato S, Bortoluzzi S (2009) Motif discovery in promoters of genes co-localized and co-expressed during myeloid cells differentiation. Nucleic Acids Res 37(2):533–549

    Article  CAS  PubMed  Google Scholar 

  • Dieterich K, Soto Rifo R, Faure AK et al (2007) Homozygous mutation of AURKC yields large-headed polyploid spermatozoa and causes male infertility. Nat Genet 39(5):661–665

    Article  CAS  PubMed  Google Scholar 

  • Duquesnoy P, Escudier E, Vincensini L, Freshour J, Bridoux AM, Coste A, Deschildre A, de Blic J, Legendre M, Montantin G, Tenreiro H, Vojtek A-M, Loussert C, Clement A, Escalier D, Bastin P, Mitchell DR, Amselem S (2009) Loss-of-function mutations in the human ortholog of Chlamydomonas reinhardtii ODA7 disrupt dynein arm assembly and cause primary ciliary dyskinesia. Am J Hum Genet 85:890–896

    Article  CAS  PubMed  Google Scholar 

  • Efimenko E, Bubb K, Mak HY, Holzman T, Leroux MR et al (2005) Analysis of xbx genes in C. elegans. Development 132(8):1923–1934

    Article  CAS  PubMed  Google Scholar 

  • El Zein L, Ait-Lounis A, Morlé L, Thomas J, Chhin B, Spassky N, Reith W, Durand B (2009) RFX3 governs growth and beating efficiency of motile cilia in mouse and controls the expression of genes involved in human ciliopathies. J Cell Sci 122(Pt 17):3180–3189

    Article  CAS  PubMed  Google Scholar 

  • Fliegauf M, Olbrich H, Horvath J, Wildhaber JH, Zariwala MA et al (2005) Mislocalization of DNAH5 and DNAH9 in respiratory cells from patients with primary ciliary dyskinesia. Am J Respir Crit Care Med 171(12):1343–1349

    Article  PubMed  Google Scholar 

  • Geremek M, Witt M (2004) Primary ciliary dyskinesia: genes, candidate genes and chromosomal regions. J Appl Genet 45(3):347–361

    PubMed  Google Scholar 

  • Gherman A, Davis EE, Katsanis N (2006) The ciliary proteome database: an integrated community resource for the genetic and functional dissection of cilia. Nat Genet 38(9):961–962

    Article  CAS  PubMed  Google Scholar 

  • Heyer LJ, Kruglyak S, Yooseph S (1999) Exploring expression data: identification and analysis of coexpressed genes. Genome Res 9(11):1106–1115

    Article  CAS  PubMed  Google Scholar 

  • Huang da W, Sherman BT, Tan Q, Collins JR, Alvord WG et al (2007) The DAVID gene functional classification tool: a novel biological module-centric algorithm to functionally analyze large gene lists. Genome Biol 8(9):R183

    Google Scholar 

  • Inglis PN, Boroevich KA, Leroux MR (2006) Piecing together a ciliome. Trends Genet 22(9):491–500

    Article  CAS  PubMed  Google Scholar 

  • Iwama A, Pan J, Zhang P, Reith W, Mach B, Tenen DG, Sun Z (1999) Dimeric RFX proteins contribute to the activity and lineage specificity of the interleukin-5 receptor alpha promoter through activation and repression domains. Mol Cell Biol 19(6):3940–3950

    CAS  PubMed  Google Scholar 

  • Karadag B, James AJ, Gultekin E (1999) Nasal and lower airway level of nitric oxide in children with primary ciliary dyskinesia. Eur Respir J 13:1402–1405

    Article  CAS  PubMed  Google Scholar 

  • Kouwenhoven EN, van Heeringen SJ, Tena JJ, Oti M, Dutilh BE, Alonso ME, de la Calle-Mustienes E, Smeenk L, Rinne T, Parsaulian L, Bolat E, Jurgelenaite R, Huynen MA, Hoischen A, Veltman JA, Brunner HG, Roscioli T, Oates E, Wilson M, Manzanares M, Gómez-Skarmeta JL, Stunnenberg HG, Lohrum M, van Bokhoven H, Zhou H (2010) Genome-wide profiling of p63 DNA-binding sites identifies an element that regulates gene expression during limb development in the 7q21 SHFM1 locus. PLoS Genet 19;6(8):e1001065

    Google Scholar 

  • Kubo A, Yuba-Kubo A, Tsukita S, Tsukita S, Amagai M (2008) Sentan: a novel specific component of the apical structure of vertebrate motile cilia. Mol Biol Cell 19(12):5338–5346

    Article  CAS  PubMed  Google Scholar 

  • Li JB, Gerdes JM, Haycraft CJ, Fan Y, Teslovich TM et al (2004) Comparative genomics identifies a flagellar and basal body proteome that includes the BBS5 human disease gene. Cell 117(4):541–552

    Article  CAS  PubMed  Google Scholar 

  • Loges NT, Olbrich H, Fenske L, Mussaffi H, Horvath J, Fliegauf M, Kuhl H, Baktai G, Peterffy E, Chodhari R, Chung EMK, Rutman A et al (2002) DNAI2 mutations cause primary ciliary dyskinesia with defects in the outer dynein arm. Am J Hum Genet 83:547–558

    Article  Google Scholar 

  • Loges NT, Olbrich H, Becker-Heck A, Haffner K, Heer A, Reinhard C, Schmidts M, Kispert A, Zariwala MA, Leigh MW, Knowles MR, Zentgraf H, Seithe H, Nurnberg G, Nurnberg P, Reinhardt R, Omran H (2009) Deletions and point mutations of LRRC50 cause primary ciliary dyskinesia due to dynein arm defects. Am J Hum Genet 85:883–889

    Article  CAS  PubMed  Google Scholar 

  • McClintock TS, Glasser CE, Bose SC, Bergman DA (2008) Tissue expression patterns identify mouse cilia genes. Physiol Genomics 32(2):198–206

    CAS  PubMed  Google Scholar 

  • Meeks M, Walne A, Spiden S et al (2000) A locus for primary ciliary dyskinesia maps to chromosome 19q. J Med Genet 37(4):241–244

    Article  CAS  PubMed  Google Scholar 

  • Moore A, Escudier E, Roger G, Tamalet A, Pelosse B et al (2006) RPGR is mutated in patients with a complex X linked phenotype combining primary ciliary dyskinesia and retinitis pigmentosa. J Med Genet 43(4):326–333

    Article  CAS  PubMed  Google Scholar 

  • Nobutaka H, Yosuke T, Yasushi O (2009) Left–right determination: involvement of molecular motor KIF3, cilia, and nodal flow. Cold Spring Harb Perspect Biol 1(1):a000802

    Article  Google Scholar 

  • Olbrich H, Haffner K, Kispert A, Volkel A, Volz A, Sasmaz G, Reinhardt R, Hennig S, Lehrach H, Konietzko N, Zariwala M, Noone PG, Knowles M, Mitchison HM, Meeks M, Chung EMK, Hildebrandt F, Sudbrak R, Omran H (2002) Mutations in DNAH5 cause primary ciliary dyskinesia and randomization of left–right asymmetry. Nat Genet 30:143–144

    Article  CAS  PubMed  Google Scholar 

  • Omran H, Kobayashi D, Olbrich H, Tsukahara T, Loges NT, Hagiwara H, Zhang Q, Leblond G, O’Toole E, Hara C, Mizuno H, Kawano H et al (2008) Ktu/PF13 is required for cytoplasmic pre-assembly of axonemal dyneins. Nature 456:611–616

    Article  CAS  PubMed  Google Scholar 

  • Ostrowski LE, Blackburn K, Radde KM, Moyer MB, Schlatzer DM et al (2002) A proteomic analysis of human cilia: identification of novel components. Mol Cell Proteomics 1(6):451–465

    Article  CAS  PubMed  Google Scholar 

  • Pazour GJ, Agrin N, Leszyk J, Witman GB (2005a) Proteomic analysis of a eukaryotic cilium. J Cell Biol 170(1):103–113

    Article  CAS  PubMed  Google Scholar 

  • Pazour GJ, Agrin N, Walker BL, Witman GB (2005b) Identification of predicted human outer dynein arm genes: candidates for primary ciliary dyskinesia genes. J Med Genet 43(1):62–73

    Article  PubMed  Google Scholar 

  • Pennarun G, Escudier E, Chapelin C, Bridoux A-M, Cacheux V, Roger G, Clement A, Goossens M, Amselem S, Duriez B (1999) Loss-of-function mutations in a human gene related to Chlamydomonas reinhardtii dynein IC78 result in primary ciliary dyskinesia. Am J Hum Genet 65:1508–1519

    Article  CAS  PubMed  Google Scholar 

  • Regamey N, Hilliard TN, Saglani S, Zhu J, Scallan M, Balfour-Lynn IM, Rosenthal M, Jeffery PK, Alton EW, Bush A, Davies JC (2007) Quality, size, and composition of pediatric endobronchial biopsies in cystic fibrosis. Chest 131(6):1710–1717

    Article  PubMed  Google Scholar 

  • Riehle KJ, Campbell JS, McMahan RS, Johnson MM, Beyer RP, Bammler TK, Fausto N (2008) Regulation of liver regeneration and hepatocarcinogenesis by suppressor of cytokine signaling 3. J Exp Med 205(1):91–103

    Article  CAS  PubMed  Google Scholar 

  • Satir P, Christensen ST (2008) Structure and function of mammalian cilia. Histochem Cell Biol 129(6):687–693

    Article  CAS  PubMed  Google Scholar 

  • Smith JC, Northey JG, Garg J, Pearlman RE, Siu KW (2005) Robust method for proteome analysis by MS/MS using an entire translated genome: demonstration on the ciliome of Tetrahymena thermophila. J Proteome Res 4(3):909–919

    Article  CAS  PubMed  Google Scholar 

  • Stolc V, Samanta MP, Tongprasit W, Marshall WF (2005) Genome-wide transcriptional analysis of flagellar regeneration in Chlamydomonas reinhardtii identifies orthologs of ciliary disease genes. Proc Natl Acad Sci USA 102(10):3703–3707

    Article  CAS  PubMed  Google Scholar 

  • Vadigepalli R, Chakravarthula P, Zak DE, Schwaber JS, Gonye GE (2003) PAINT: a promoter analysis and interaction network generation tool for gene regulatory network identification. OMICS 7(3):235–252

    Article  CAS  PubMed  Google Scholar 

  • Valente EM, Silhavy JL, Brancati F, Barrano G, Krishnaswami SR, Castori M, Lancaster MA, Boltshauser E, Boccone L, Al-Gazali L, Fazzi E, Signorini S, Louie CM, Bellacchio E, Bertini E, Dallapiccola B, Gleeson JG (2006) Mutations in CEP290, which encodes a centrosomal protein, cause pleiotropic forms of Joubert syndrome. Nat Genet 38(6):623–625

    Article  CAS  PubMed  Google Scholar 

  • Wingender E, Dietze P, Karas H, Knüppel R (1996) TRANSFAC: a database on transcription factors and their DNA binding sites. Nucleic Acids Res 24(1):238–241

    Article  CAS  PubMed  Google Scholar 

  • Yu X, Lin J, Zack DJ, Qian J (2006) Computational analysis of tissue-specific combinatorial gene regulation: predicting interaction between transcription factors in human tissues. Nucleic Acids Res 34(17):4925–4936

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The cooperation of all the Polish families who participated in this study was invaluable. We thank Jackie Senior for editing the manuscript, Ewa Rutkiewicz for laboratory assistance, and the staff of the Genomics Facility, UMCG, for scientific and technical work. MG was supported by the International PhD Program of Utrecht University, The Netherlands coordinated by the International Institute of Molecular and Cell Biology, Warsaw, Poland.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maciej Geremek.

Additional information

M. Witt and C. Wijmenga equally contributed to the manuscript.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary information

Supplementary table 1. Electron microscopy, nitric oxide measurements and situs status in the patients.

Supplementary table 2. Known ciliary genes in the cluster A

Supplementary table 3. Cluster A genes previously not linked to cilia

Supplementary table 4. Transcription factors significantly over-represented in the 500 bp upstream sequences of analyzed groups of genes

Supplementary material 1 (DOC 12 kb)

Supplementary material 2 (DOC 297 kb)

Supplementary material 3 (DOC 370 kb)

Supplementary material 4 (DOC 137 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Geremek, M., Bruinenberg, M., Ziętkiewicz, E. et al. Gene expression studies in cells from primary ciliary dyskinesia patients identify 208 potential ciliary genes. Hum Genet 129, 283–293 (2011). https://doi.org/10.1007/s00439-010-0922-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00439-010-0922-4

Keywords

Navigation