Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Barrett’s oesophagus: an ideal model to study cancer genetics

Abstract

Chronic gastro-oesophageal reflux disease can induce a metaplastic change of the distal oesophagus called Barrett’s oesophagus whereby the normal squamous epithelium is substituted by a columnar epithelium. Patients with Barrett’s oesophagus are at increased risk of oesophageal adenocarcinoma which occurs through dysplastic stages with increasing degree of cellular and architectural disorganization. Barrett’s oesophagus represents an ideal model to study the genetic events supporting the onset of an invasive tumour since patients with this condition are surveilled with endoscopic tissue sampling until high grade dysplasia or intramucosal carcinoma develop. However, due to the relatively low incidence of this disease compared to other cancers, i.e. colon and breast, it is only recently that researchers have concentrated on understanding the genetic events supporting the onset of Barrett’s and its transformation to cancer. Here, we review the knowledge acquired so far on the genetic and molecular alterations along the oesophageal metaplasia–dysplasia-carcinoma sequence.

This is a preview of subscription content, log in to check access.

Fig. 1

References

  1. Abdalla SI, Lao-Sirieix P, Novelli MR, Lovat LB, Sanderson IR, Fitzgerald RC (2004) Gastrin-induced cyclooxygenase-2 expression in Barrett’s carcinogenesis. Clin Cancer Res 15;10(14):4784–4792

  2. Anderson MR, Harrison R, Atherfold PA, Campbell MJ, Darnton SJ, Obszynska J, Jankowski JA (2006) Met receptor signaling: a key effector in esophageal adenocarcinoma. Clin Cancer Res 15;12(20 Pt 1):5936–5943

  3. Arber N, Lightdale C, Rotterdam H, Han KH, Sgambato A, Yap E, Ahsan H, Finegold J, Stevens PD, Green PH, Hibshoosh H, Neugut AI, Holt PR, Weinstein IB (1996) Increased expression of the cyclin D1 gene in Barrett’s esophagus. Cancer Epidemiol Biomarkers Prev 5(6):457–459

  4. Auvinen MI, Sihvo EI, Ruohtula T, Salminen JT, Koivistoinen A, Siivola P, Rönnholm R, Rämö JO, Bergman M, Salo JA (2002) Incipient angiogenesis in Barrett’s epithelium and lymphangiogenesis in Barrett’s adenocarcinoma J Clin Oncol 1;20(13):2971–2979

  5. Bailey T, Biddlestone L, Shepherd N, Barr H, Warner P, Jankowski J (1998) Altered cadherin and catenin complexes in the Barrett’s esophagus-dysplasia-adenocarcinoma sequence: correlation with disease progression and dedifferentiation. Am J Pathol 152(1):135–144

  6. Bani-Hani K, Martin IG, Hardie LJ, Mapstone N, Briggs JA, Forman D, Wild CP (2000) Prospective study of cyclin D1 overexpression in Barrett’s esophagus: association with increased risk of adenocarcinoma J Natl Cancer Inst 16;92(16):1316–1321

  7. Barr H, Stone N, Rembacken B (2005) Endoscopic therapy for Barrett’s oesophagus. Gut 54(6):875–884

  8. Barrett MT, Sanchez CA, Prevo LJ, Wong DJ, Galipeau PC, Paulson TG, Rabinovitch PS, Reid BJ (1999) Evolution of neoplastic cell lineages in Barrett oesophagus. Nat Genet 22(1):106–109

  9. Baumann S, Keller G, Pühringer F, Napieralski R, Feith M, Langer R, Höfler H, Stein HJ, Sarbia M (2006) The prognostic impact of O6-Methylguanine-DNA Methyltransferase (MGMT) promotor hypermethylation in esophageal adenocarcinoma Int J Cancer 15;119(2):264–268

  10. Beck F (2004) The role of Cdx genes in the mammalian gut. Gut 53:1394–1396

  11. Berghöfer A, Pischon T, Reinhold T, Apovian CM, Sharma AM, Willich SN (2008) Obesity prevalence from a European perspective: a systematic review BMC Public Health 5;8:200

  12. Beuzen F, Dubois S, Fléjou JF (2000) Chromosomal numerical aberrations are frequent in oesophageal and gastric adenocarcinomas: a study using in situ hybridization. Histopathology 37(3):241–249

  13. Blount PL, Meltzer SJ, Yin J, Huang Y, Krasna MJ, Reid BJ (1993) Clonal ordering of 17p and 5q allelic losses in Barrett dysplasia and adenocarcinoma. Proc Natl Acad Sci USA 15;90(8):3221–3225

  14. Bredberg A, Bodmer W (2007) Cytostatic drug treatment causes seeding of gene promoter methylation. Eur J Cancer 43(5):947–954

  15. Brown LM, Devesa SS, Chow WH (2008) Incidence of adenocarcinoma of the esophagus among white Americans by sex, stage, and age. J Natl Cancer Inst 20;100(16):1184–1187

  16. Buttar NS, Wang KK, Sebo TJ, Riehle DM, Krishnadath KK, Lutzke LS, Anderson MA, Petterson TM, Burgart LJ (2001) Extent of high-grade dysplasia in Barrett’s esophagus correlates with risk of adenocarcinoma. Gastroenterology 120:1630–1639

  17. Buttar NS, Wang KK, Leontovich O, Westcott JY, Pacifico RJ, Anderson MA, Krishnadath KK, Lutzke LS, Burgart LJ (2002) Chemoprevention of esophageal adenocarcinoma by COX-2 inhibitors in an animal model of Barrett’s esophagus. Gastroenterology 122:1101–1112

  18. Cameron AJ, Lagergren J, Henriksson C, Nyren O, Locke GR 3rd, Pedersen NL (2002) Gastroesophageal reflux disease in monozygotic and dizygotic twins. Gastroenterology 122:55–59

  19. Casson AG, Zheng Z, Evans SC, Geldenhuys L, van Zanten SV, Veugelers PJ, Porter GA, Guernsey DL (2005a) Cyclin D1 polymorphism (G870A) and risk for esophageal adenocarcinoma. Cancer 104:730–739

  20. Casson AG, Zheng Z, Evans SC, Veugelers PJ, Porter GA, Guernsey DL (2005b) Polymorphisms in DNA repair genes in the molecular pathogenesis of esophageal (Barrett) adenocarcinoma. Carcinogenesis 26(9):1536–1541

  21. Casson AG, Zheng Z, Porter GA, Guernsey DL (2006) Genetic polymorphisms of microsomal epoxide hydroxylase and glutathione S-transferases M1, T1 and P1, interactions with smoking, and risk for esophageal (Barrett) adenocarcinoma. Cancer Detect Prev 30(5):423–431

  22. Cawley HM, Meltzer SJ, De Benedetti VM, Hollstein MC, Muehlbauer KR, Liang L, Bennett WP, Souza RF, Greenwald BD, Cottrell J, Salabes A, Bartsch H, Trivers GE (1998) Anti-p53 antibodies in patients with Barrett’s esophagus or esophageal carcinoma can predate cancer diagnosis. Gastroenterology 115:19–27

  23. Chak A, Lee T, Kinnard MF, Brock W, Faulx A, Willis J, Cooper GS, Sivak MV Jr, Goddard KA (2002) Familial aggregation of Barrett’s oesophagus, oesophageal adenocarcinoma, and oesophagogastric junctional adenocarcinoma in Caucasian adults. Gut 51:323–328

  24. Chak A, Faulx A, Kinnard M, Brock W, Willis J, Wiesner GL, Parrado AR, Goddard KA (2004) Identification of Barrett’s esophagus in relatives by endoscopic screening. Am J Gastroenterol 99:2107–2114

  25. Chak A, Ochs-Balcom H, Falk G, Grady WM, Kinnard M, Willis JE, Elston R, Eng C (2006) Familiality in Barrett’s esophagus, adenocarcinoma of the esophagus, and adenocarcinoma of the gastroesophageal junction. Cancer Epidemiol Biomarkers Prev 15(9):1668–1673

  26. Chandrasoma P, Wickramasinghe K, Ma Y, DeMeester T (2007) Is intestinal metaplasia a necessary precursor lesion for adenocarcinomas of the distal esophagus, gastroesophageal junction and gastric cardia? Dis Esophagus 20(1):36–41

  27. Chang CL, Lao-Sirieix P, Save V, De La Cueva Mendez G, Laskey R, Fitzgerald RC (2007) Retinoic acid-induced glandular differentiation of the oesophagus. Gut 56(7):906–917

  28. Clément G, Braunschweig R, Pasquier N, Bosman FT, Benhattar J (2006) Alterations of the Wnt signaling pathway during the neoplastic progression of Barrett’s esophagus. Oncogene 18;25(21):3084–3092

  29. Clément G, Guilleret I, He B, Yagui-Beltrán A, Lin YC, You L, Xu Z, Shi Y, Okamoto J, Benhattar J, Jablons D (2008) Epigenetic alteration of the Wnt inhibitory factor-1 promoter occurs early in the carcinogenesis of Barrett's esophagus. Cancer Sci 99(1):46–53

  30. Clemons NJ, McColl KE, Fitzgerald RC (2007) Nitric oxide and acid induce double-strand DNA breaks in Barrett’s esophagus carcinogenesis via distinct mechanisms. Gastroenterology 133(4):1198–1209

  31. Combet E, Paterson S, Iijima K, Winter J, Mullen W, Crozier A, Preston T, McColl KE (2007) Fat transforms ascorbic acid from inhibiting to promoting acid-catalysed N-nitrosation. Gut 56(12):1678–1684

  32. Corley DA, Kubo A, Levin TR, Block G, Habel L, Zhao W, Leighton P, Quesenberry C, Rumore GJ, Buffler PA (2007) Abdominal obesity and body mass index as risk factors for Barrett’s esophagus. Gastroenterology 133:34–41

  33. Corley DA, Kubo A, Levin TR, Block G, Habel L, Zhao W, Leighton P, Rumore G, Quesenberry C, Buffler P, Parsonnet J (2008) Helicobacter pylori infection and the risk of Barrett’s oesophagus: a community-based study. Gut 57:727–733

  34. Correa P (1992) Human gastric carcinogenesis: a multistep and multifactorial process–First American Cancer Society Award Lecture on Cancer Epidemiology and Prevention. Cancer Res 52:6735

  35. Crabb DW, Berk MA, Hall TR, Conneally PM, Biegel AA, Lehman GA (1985) Familial gastroesophageal reflux and development of Barrett’s esophagus. Ann Intern Med 103:52–54

  36. de Moraes E, Dar NA, de Moura Gallo CV, Hainaut P (2007) Cross-talks between cyclooxygenase-2 and tumor suppressor protein p53: balancing life and death during inflammatory stress and carcinogenesis. Int J Cancer 1;121(5):929–937

  37. Debruyne PR, Witek M, Gong L, Birbe R, Chervoneva I, Jin T, Domon-Cell C, Palazzo JP, Freund JN, Li P, Pitari GM, Schulz S, Waldman SA (2006) Bile acids induce ectopic expression of intestinal guanylyl cyclase C Through nuclear factor-kappaB and Cdx2 in human esophageal cells. Gastroenterology 130(4):1191–1206

  38. Dent J, El-Serag HB, Wallander MA, Johansson S (2005) Epidemiology of gastro-oesophageal reflux disease: a systematic review. Gut 54(5):710–717

  39. Doecke J, Zhao ZZ, Pandeya N, Sadeghi S, Stark M, Green AC, Hayward NK, Webb PM, Whiteman DC Australian Cancer Study (2008) Polymorphisms in MGMT and DNA repair genes and the risk of esophageal adenocarcinoma. Int J Cancer 1;123(1):174–180

  40. Dolan K, Garde J, Walker SJ, Sutton R, Gosney J, Field JK (1999) LOH at the sites of the DCC, APC, and TP53 tumor suppressor genes occurs in Barrett’s metaplasia and dysplasia adjacent to adenocarcinoma of the esophagus. Hum Pathol 30(12):1508–1514

  41. Donaldson L (2008) CMO annual report 2007. A Pathological Concern Understanding the rise in oesophageal cancer http://www.dh.gov.uk/en/Publicationsandstatistics/Publications/AnnualReports/DH_086176

  42. Drovdlic CM, Goddard KA, Chak A, Brock W, Chessler L, King JF, Richter J, Falk GW, Johnston DK, Fisher JL, Grady WM, Lemeshow S, Eng C (2003) Demographic and phenotypic features of 70 families segregating Barrett’s oesophagus and oesophageal adenocarcinoma. J Med Genet 40:651–656

  43. Dvorak K, Fass R, Dekel R, Payne CM, Chavarria M, Dvorakova B, Bernstein H, Bernstein C, Garewal H (2006) Esophageal acid exposure at pH ≤ 2 is more common in Barrett’s esophagus patients and is associated with oxidative stress. Dis Esophagus 19(5):366–372

  44. Dvorak K, Payne CM, Chavarria M, Ramsey L, Dvorakova B, Bernstein H, Holubec H, Sampliner RE, Guy N, Condon A, Bernstein C, Green SB, Prasad A, Garewal HS (2007) Bile acids in combination with low pH induce oxidative stress and oxidative DNA damage: relevance to the pathogenesis of Barrett’s oesophagus. Gut. 56(6):763–771

  45. Eda A, Osawa H, Satoh K, Yanaka I, Kihira K, Ishino Y, Mutoh H, Sugano K (2003) Aberrant expression of CDX2 in Barrett’s epithelium and inflammatory esophageal mucosa. J Gastroenterol 38:14–22

  46. Edelstein ZR, Farrow DC, Bronner MP, Rosen SN, Vaughan TL (2007) Central adiposity and risk of Barrett’s esophagus. Gastroenterology 133:403–411

  47. Eloubeidi MA, Mason AC, Desmond RA, El-Serag HB (2003) Temporal trends (1973–1997) in survival of patients with esophageal adenocarcinoma in the United States: a glimmer of hope? Am J Gastroenterol 98(7):1627–1633

  48. Eng C, Spechler SJ, Ruben R, Li FP (1993) Familial Barrett esophagus and adenocarcinoma of the gastroesophageal junction. Cancer Epidemiol Biomarkers Prev 2:397–399

  49. Esteller M (2007) Cancer epigenomics: DNA methylomes and histone-modification maps. Nat Rev Genet 8(4):286–298

  50. Evans SC, Gillis A, Geldenhuys L, Vaninetti NM, Malatjalian DA, Porter GA, Guernsey DL, Casson AG (2004) Microsatellite instability in esophageal adenocarcinoma. Cancer Lett 30;212(2):241–251

  51. Falk GW (2002) Barrett’s esophagus. Gastroenterology 122:1569–1591

  52. Falkenback D, Johansson J, Halvarsson B, Nilbert M (2005) Defective mismatch-repair as a minor tumorigenic pathway in Barrett esophagus-associated adenocarcinoma. Cancer Genet Cytogenet 157(1):82–86

  53. Farhadi A, Fields J, Banan A, Keshavarzian A (2002) Reactive oxygen species: are they involved in the pathogenesis of GERD, Barrett’s esophagus, and the latter’s progression toward esophageal cancer? Am J Gastroenterol 97(1):22–26

  54. Feith M, Stein HJ, Mueller J, Siewert JR (2004) Malignant degeneration of Barrett’s esophagus: the role of the Ki-67 proliferation fraction, expression of E-cadherin and p53. Dis Esophagus 17(4):322–327

  55. Ferguson HR, Wild CP, Anderson LA, Murphy SJ, Johnston BT, Murray LJ, Watson RG, McGuigan J, Reynolds JV, Hardie LJ (2008) Cyclooxygenase-2 and inducible nitric oxide synthase gene polymorphisms and risk of reflux esophagitis, Barrett’s esophagus, and esophageal adenocarcinoma. Cancer Epidemiol Biomarkers Prev 17(3):727–731

  56. Finley JC, Reid BJ, Odze RD, Sanchez CA, Galipeau P, Li X, Self SG, Gollahon KA, Blount PL, Rabinovitch PS (2006) Chromosomal instability in Barrett’s esophagus is related to telomere shortening. Cancer Epidemiol Biomarkers Prev 15(8):1451–1457

  57. Galipeau PC, Prevo LJ, Sanchez CA, Longton GM, Reid BJ (1999) Clonal expansion and loss of heterozygosity at chromosomes 9p and 17p in premalignant esophageal (Barrett’s) tissue. J Natl Cancer Inst 15;91(24):2087–2095

  58. Galipeau PC, Li X, Blount PL, Maley CC, Sanchez CA, Odze RD, Ayub K, Rabinovitch PS, Vaughan TL, Reid BJ (2007) NSAIDs modulate CDKN2A, TP53, and DNA content risk for progression to esophageal adenocarcinoma. PLoS Med 4(2):e67

  59. García Rodríguez LA, Lagergren J, Lindblad M (2006) Gastric acid suppression and risk of oesophageal and gastric adenocarcinoma: a nested case control study in the UK. Gut 55(11):1538–1544

  60. Garewal HS, Sampliner R, Liu Y, Trent JM (1989) Chromosomal rearrangements in Barrett’s esophagus. A premalignant lesion of esophageal adenocarcinoma. Cancer Genet Cytogenet 15;42(2):281–286

  61. Gatenby PA, Ramus JR, Caygill CP, Shepherd NA, Watson A (2008) Relevance of the detection of intestinal metaplasia in non-dysplastic columnar-lined oesophagus. Sand J Gastroenterol 43(5):524–530

  62. Gregorieff A, Clevers H (2005) Wnt signaling in the intestinal epithelium: from endoderm to cancer. Genes Dev 15;19(8):877–890

  63. Haggitt RC, Tryzelaar J, Ellis FH, Colcher H (1978) Adenocarcinoma complicating columnar epithelium-lined (Barrett’s) esophagus. Am J Clin Pathol 70:1–5

  64. Haigh CR, Attwood SE, Thompson DG, Jankowski JA, Kirton CM, Pritchard DM, Varro A, Dimaline R (2003) Gastrin induces proliferation in Barrett’s metaplasia through activation of the CCK2 receptor. Gastroenterology 124(3):615–625

  65. Hamilton SR, Smith RR, Cameron JL (1988) Prevalence and characteristics of Barrett esophagus in patients with adenocarcinoma of the esophagus or esophagogastric junction. Hum Pathol 19(8):942–948

  66. Hawe A, Payne WS, Weiland LH (1973) Adenocarcinoma in the columnar epithelial lined lower (Barrett’s) esophagus. Thorax 28:511–514

  67. Helm J, Enkemann SA, Coppola D, Barthel JS, Kelley ST, Yeatman TJ (2005) Dedifferentiation precedes invasion in the progression from Barrett’s metaplasia to esophageal adenocarcinoma. Clin Cancer Res 11(7):2478–2485

  68. Huang Y, Peters CJ, Fitzgerald RC, Gjerset RA (2008) Progressive silencing of p14ARF in oesophageal adenocarcinoma. J Cell Mol Med 2008 9 Apr. [Epub ahead of print]

  69. Iijima K, Grant J, McElroy K, Fyfe V, Preston T, McColl KE (2003) Novel mechanism of nitrosative stress from dietary nitrate with relevance to gastro-oesophageal junction cancers. Carcinogenesis. 24(12):1951–1960

  70. Ioannides AS, Henderson DJ, Spitz L, Copp AJ (2003) Role of Sonic hedgehog in the development of the trachea and oesophagus. J Pediatr Surg 38(1):29–36

  71. Islam A, Banerjee S, Kambhampati S, Baranda J, Banerjee S, Weston AP, Saxena NK, Banerjee SK (2006) Angiogenic switch in Barrett's adenocarcinoma: the role of vascular endothelial growth factor. Front Biosci 1;11:2336–2348

  72. Jeanes A, Gottardi CJ, Yap AS (2008) Cadherins and cancer: how does cadherin dysfunction promote tumor progression? Oncogene 24;27(55):6920–6929

  73. Jenkins GJ, D’Souza FR, Suzen SH, Eltahir ZS, James SA, Parry JM, Griffiths PA, Baxter JN (2007) Deoxycholic acid at neutral and acid pH, is genotoxic to oesophageal cells through the induction of ROS: The potential role of anti-oxidants in Barrett’s oesophagus. Carcinogenesis 28(1):136–142

  74. Jethwa P, Naqvi M, Hardy RG, Hotchin NA, Roberts S, Spychal R, Tselepis C (2008) Overexpression of Slug is associated with malignant progression of esophageal adenocarcinoma. World J Gastroenterol 21;14(7):1044–1052

  75. Jin Z, Cheng Y, Olaru A, Kan T, Yang J, Paun B, Ito T, Hamilton JP, David S, Agarwal R, Selaru FM, Sato F, Abraham JM, Beer DG, Mori Y, Shimada Y, Meltzer SJ (2008) Promoter hypermethylation of CDH13 is a common, early event in human esophageal adenocarcinogenesis and correlates with clinical risk factors. Int J Cancer 15;123(10):2331–2336

  76. Jochem VJ, Fuerst PA, Fromkes JJ (1992) Familial Barrett’s esophagus associated with adenocarcinoma. Gastroenterology 102:1400–1402

  77. Johns BA (1952) Developmental changes in the oesophageal epithelium in man. J Anat 86:431–442

  78. Johnston MH (2005) Technology insight: ablative techniques for Barrett’s esophagus–current and emerging trends. Nat Clin Pract Gastroenterol Hepatol 2(7):323–330

  79. Jolly AJ, Wild CP, Hardie LJ (2004) Acid and bile salts induce DNA damage in human oesophageal cell lines. Mutagenesis 19(4):319–324

  80. Kaina B, Christmann M, Naumann S, Roos WP (2007) MGMT: key node in the battle against genotoxicity, carcinogenicity and apoptosis induced by alkylating agents DNA Repair (Amst) 1;6(8):1079–1099

  81. Kala Z, Dolina J, Marek F, Izakovicova Holla L (2007) Polymorphisms of glutathione S-transferase M1, T1 and P1 in patients with reflux esophagitis and Barrett’s esophagus. J Hum Genet 52:527–534

  82. Kawakami K, Brabender J, Lord RV, Groshen S, Greenwald BD, Krasna MJ, Yin J, Fleisher AS, Abraham JM, Beer DG, Sidransky D, Huss HT, Demeester TR, Eads C, Laird PW, Ilson DH, Kelsen DP, Harpole D, Moore MB, Danenberg KD, Danenberg PV, Meltzer SJ. (2000) Hypermethylated APC DNA in plasma and prognosis of patients with esophageal adenocarcinoma. J Natl Cancer Inst 15;92(22):1805–1811

  83. Kazumori H, Ishihara S, Rumi MA, Kadowaki Y, Kinoshita Y (2006) Bile acids directly augment caudal related homeobox gene Cdx2 expression in oesophageal keratinocytes in Barrett’s epithelium. Gut 55(1):16–25

  84. Keenan ID, Sharrard RM, Isaacs HV (2006) FGF signal transduction and the regulation of Cdx gene expression. Dev Biol 15;299(2):478–488

  85. Kendall BJ, Macdonald GA, Hayward NK, Prins JB, Brown I, Walker N, Pandeya N, Green AC, Webb PM, Whiteman DC (2008) Leptin and the risk of Barrett’s oesophagus. Gut 57:448–454

  86. Kuester D, El-Rifai W, Peng D, Ruemmele P, Kroeckel I, Peters B, Moskaluk CA, Stolte M, Mönkemüller K, Meyer F, Schulz HU, Hartmann A, Roessner A, Schneider-Stock R (2008) Silencing of MGMT expression by promoter hypermethylation in the metaplasia–dysplasia-carcinoma sequence of Barrett’s esophagus. Cancer Lett 2008, 20 Nov [Epub ahead of print]

  87. Kumble S, Omary MB, Fajardo LF, Triadafilopoulos G (1996). Multifocal heterogeneity in villin and Ep-CAM expression in Barrett’s esophagus. Int J Cancer 28;66(1):48-54

  88. Lagergren J, Bergström R, Lindgren A, Nyrén O (1999) Symptomatic gastroesophageal reflux as a risk factor for esophageal adenocarcinoma. N Engl J Med 18;340(11):825-31

  89. Lala PK, Chakraborty C (2001) Role of nitric oxide in carcinogenesis and tumour progression. Lancet Oncol 2(3):149–156

  90. Lao-Sirieix P, Lovat L, Fitzgerald RC (2007) Cyclin A immunocytology as a risk stratification tool for Barrett’s esophagus surveillance. Clin Cancer Res 15;13(2 Pt 1):659-665

  91. Lee JM, Lee YC, Yang SY, Yang PW, Luh SP, Lee CJ, Chen CJ, Wu MT (2001) Genetic polymorphisms of XRCC1 and risk of the esophageal cancer. Int J Cancer 20;95(4):240-246

  92. Leedham SJ, Preston SL, McDonald SA, Elia G, Bhandari P, Poller D, Harrison R, Novelli MR, Jankowski JA, Wright NA (2008) Individual crypt genetic heterogeneity and the origin of metaplastic glandular epithelium in human. Barrett’s oesophagus Gut 57(8):1041–1048

  93. Lengerke C, Schmitt S, Bowman TV, Jang IH, Maouche-Chretien L, McKinney-Freeman S, Davidson AJ, Hammerschmidt M, Rentzsch F, Green JB, Zon LI, Daley GQ (2008) BMP and Wnt specify hematopoietic fate by activation of the Cdx-Hox pathway. Cell Stem Cell 10;2(1):72–82

  94. Lichtenstein DR, Cash BD, Davila R, Baron TH, Adler DG, Anderson MA, Dominitz JA, Gan SI, Harrison ME 3rd, Ikenberry SO, Qureshi WA, Rajan E, Shen B, Zuckerman MJ, Fanelli RD, VanGuilder T (2007) Role of endoscopy in the management of GERD. Gastrointest Endosc 66(2):219–224

  95. Litingtung Y, Lei L, Westphal H, Chiang C (1998) Sonic hedgehog is essential to foregut development. Nat Genet 20(1):58–61

  96. Liu G, Zhou W, Yeap BY, Su L, Wain JC, Poneros JM, Nishioka NS, Lynch TJ, Christiani DC (2007a) XRCC1 and XPD polymorphisms and esophageal adenocarcinoma risk. Carcinogenesis 28(6):1254–1258

  97. Liu T, Zhang X, So CK, Wang S, Wang P, Yan L, Myers R, Chen Z, Patterson AP, Yang CS, Chen X (2007b) Regulation of Cdx2 expression by promoter methylation, and effects of Cdx2 transfection on morphology and gene expression of human esophageal epithelial cells. Carcinogenesis 28(2):488–496

  98. Maley CC, Galipeau PC, Li X, Sanchez CA, Paulson TG, Reid BJ (2004) Selectively advantageous mutations and hitchhikers in neoplasms: p16 lesions are selected in Barrett’s esophagus. Cancer Res 15;64(10):3414–3427

  99. Marchetti M, Caliot E, Pringault E (2003) Chronic acid exposure leads to activation of the cdx2 intestinal homeobox gene in a long-term culture of mouse esophageal keratinocytes. J Cell Sci 15;116(Pt 8):1429–1436

  100. McManus DT, Olaru A, Meltzer SJ (2004) Biomarkers of esophageal adenocarcinoma and Barrett’s esophagus Cancer Res 1;64(5):1561–1569

  101. Milano F, van Baal JW, Buttar NS, Rygiel AM, de Kort F, DeMars CJ, Rosmolen WD, Bergman JJ, VAn Marle J, Wang KK, Peppelenbosch MP, Krishnadath KK (2007) Bone morphogenetic protein 4 expressed in esophagitis induces a columnar phenotype in esophageal squamous cells. Gastroenterology 132(7):2412–2421

  102. Miller CT, Moy JR, Lin L, Schipper M, Normolle D, Brenner DE, Iannettoni MD, Orringer MB, Beer DG (2003) Gene amplification in esophageal adenocarcinomas and Barrett’s with high-grade dysplasia. Clin Cancer Res 15;9(13):4819–4825

  103. Möbius C, Stein HJ, Spiess C, Becker I, Feith M, Theisen J, Gais P, Jütting U, Siewert JR (2005) COX2 expression, angiogenesis, proliferation and survival in Barrett’s cancer. Eur J Surg Oncol 31(7):755–759

  104. Mohammed I, Cherkas LF, Riley SA, Spector TD, Trudgill NJ (2003) Genetic influences in gastro-oesophageal reflux disease; a twin study. Gut 52:1085–1089

  105. Montgomery RK, Mulberg AE, Grand RJ (1999) Development of the human gastrointestinal tract: twenty years of progress. Gastroenterology 116(3):702–731

  106. Moons LM, Kuipers EJ, Rygiel AM, Groothuismink AZ, Geldof H, Bode WA, Krishnadath KK, Bergman JJ, van Vliet AH, Siersema PD, Kusters JG (2007) COX-2 CA-haplotype is a risk factor for the development of esophageal adenocarcinoma. Am J Gastroenterol 102(11):2373–2379

  107. Morris CD, Armstrong GR, Bigley G, Green H, Attwood SE (2001) Cyclooxygenase-2 expression in the Barrett’s metaplasia-dysplasia-adenocarcinoma sequence. Am J Gastroenterol 96(4):990–996

  108. Mortusewicz O, Schermelleh L, Walter J, Cardoso MC, Leonhardt H (2005) Recruitment of DNA methyltransferase I to DNA repair sites. Proc Natl Acad Sci USA 21;102(25):8905–8909

  109. Murphy SJ, Hughes AE, Patterson CC, Anderson LA, Watson RG, Johnston BT, Comber H, McGuigan J, Reynolds JV, Murray LJ (2007) A population-based association study of SNPs of GSTP1, MnSOD, GPX2 and Barrett’s esophagus and esophageal adenocarcinoma. Carcinogenesis 28(6):1323–1328

  110. Murray L, Sedo A, Scott M, McManus D, Sloan JM, Hardie LJ, Forman D, Wild CP (2006) TP53 and progression from Barrett’s metaplasia to oesophageal adenocarcinoma in a UK population cohort. Gut 55(10):1390–1397

  111. Neshat K, Sanchez CA, Galipeau PC, Blount PL, Levine DS, Joslyn G, Reid BJ (1994) p53 mutations in Barrett’s adenocarcinoma and high-grade dysplasia. Gastroenterology 106(6):1589–1595

  112. Noffsinger A (2003) Neoplastic risk assessment in Barrett’s esophagus: How far have we come? Hum Pathol 34(10):965–967

  113. O’Donovan N, Crown J (2007) EGFR and HER-2 antagonists in breast cancer. Anticancer Res 27(3A):1285–1294

  114. Ochs-Balcom HM, Falk G, Grady WM, Kinnard M, Willis J, Elston R, Eng C, Chak A (2007) Consortium approach to identifying genes for Barrett’s esophagus and esophageal adenocarcinoma. Transl Res 150(1):3–17

  115. Odze RD, Lauwers GY (2008) Histopathology of Barrett’s esophagus after ablation and endoscopic mucosal resection therapy. Endoscopy 40(12):1008–1015

  116. Olliver JR, Hardie LJ, Dexter S, Chalmers D, Wild CP (2003) DNA damage levels are raised in Barrett’s oesophageal mucosa relative to the squamous epithelium of the oesophagus. Biomarkers 8(6):509–521

  117. Onwuegbusi BA, Aitchison A, Chin SF, Kranjac T, Mills I, Huang Y, Lao-Sirieix P, Caldas C, Fitzgerald RC (2006) Impaired transforming growth factor beta signalling in Barrett’s carcinogenesis due to frequent SMAD4 inactivation. Gut 55(6):764–774

  118. Owonikoko T, Rees M, Gabbert HE, Sarbia M (2002) Intratumoral genetic heterogeneity in Barrett adenocarcinoma. Am J Clin Pathol 117(4):558–566

  119. Pahl HL (1999) Activators and target genes of Rel/NF-kappaB transcription factors. Oncogene 22;18(49):6853–6866

  120. Peng D, Sheta EA, Powell SM, Moskaluk CA, Washington K, Goldknopf IL, El-Rifai W (2008) Alterations in Barrett’s-related adenocarcinomas: a proteomic approach. Int J Cancer 122(6):1303–1310

  121. Persons DL, Croughan WS, Borelli KA, Cherian R (1998) Interphase cytogenetics of esophageal adenocarcinoma and precursor lesions. Cancer Genet Cytogenet 106(1):11–17

  122. Peters CJ, Fitzgerald RC (2007) Systematic review: the application of molecular pathogenesis to prevention and treatment of oesophageal adenocarcinoma. Aliment Pharmacol Ther 1;25(11):1253–1269

  123. Peters FP, Krishnadath KK, Rygiel AM, Curvers WL, Rosmolen WD, Fockens P, Ten Kate FJ, van Baal JW, Bergman JJ (2007) Stepwise radical endoscopic resection of the complete Barrett’s esophagus with early neoplasia successfully eradicates pre-existing genetic abnormalities. Am J Gastroenterol 102(9):1853–1861

  124. Playford RJ (2006) New British Society of Gastroenterology (BSG) guidelines for the diagnosis and management of Barrett’s oesophagus. Gut 55(4):442

  125. Pohl H, Welch HG (2005) The role of overdiagnosis and reclassification in the marked increase of esophageal adenocarcinoma incidence. J Natl Cancer Inst 19;97(2):142–146

  126. Prasad GA, Wang KK, Halling KC, Buttar NS, Wongkeesong LM, Zinsmeister AR, Brankley SM, Fritcher EG, Westra WM, Krishnadath KK, Lutzke LS, Borkenhagen LS (2008) Utility of biomarkers in prediction of response to ablative therapy in Barrett’s esophagus. Gastroenterology 135(2):370–379

  127. Que J, Choi M, Ziel JW, Klingensmith J, Hogan BL (2006) Morphogenesis of the trachea and esophagus: current players and new roles for noggin and Bmps. Differentiation 74(7):422–437

  128. Raskind WH, Norwood T, Levine DS, Haggitt RC, Rabinovitch PS, Reid BJ (1992) Persistent clonal areas and clonal expansion in Barrett’s esophagus. Cancer Res 15;52(10):2946–2950

  129. Rees JR, Onwuegbusi BA, Save VE, Alderson D, Fitzgerald RC (2006) In vivo and in vitro evidence for transforming growth factor-beta1-mediated epithelial to mesenchymal transition in esophageal adenocarcinoma. Cancer Res 1;66(19):9583–9590

  130. Reid BJ, Levine DS, Longton G, Blount PL, Rabinovitch PS (2000) Predictors of progression to cancer in Barrett’s esophagus: baseline histology and flow cytometry identify low- and high-risk patient subsets. Am J Gastroenterol 95:1669–1676

  131. Robertson EV, Jankowski JA (2008) Genetics of gastroesophageal cancer: paradigms, paradoxes, and prognostic utility. Am J Gastroenterol 103(2):443–449

  132. Roman S, Pétré A, Thépot A, Hautefeuille A, Scoazec JY, Mion F, Hainaut P (2007) Downregulation of p63 upon exposure to bile salts and acid in normal and cancer esophageal cells in culture. Am J Physiol Gastrointest Liver Physiol 293(1):G45–G53

  133. Romero Y, Cameron AJ, Locke GR 3rd, Schaid DJ, Slezak JM, Branch CD, Melton LJ 3rd (1997) Familial aggregation of gastroesophageal reflux in patients with Barrett’s esophagus and esophageal adenocarcinoma. Gastroenterology 113(5):1449–1456

  134. Ronkainen J, Aro P, Storskrubb T, Johansson SE, Lind T, Bolling-Sternevald E, Vieth M, Stolte M, Talley NJ, Agréus L (2005) Prevalence of Barrett’s esophagus in the general population: an endoscopic study. Gastroenterology 129(6):1825–1831

  135. Rudolph RE, Vaughan TL, Kristal AR, Blount PL, Levine DS, Galipeau PC, Prevo LJ, Sanchez CA, Rabinovitch PS, Reid BJ (2003) Serum selenium levels in relation to markers of neoplastic progression among persons with Barrett’s esophagus. J Natl Cancer Inst 21;95(10):750–757

  136. Rundhaug JE (2003) Matrix metalloproteinases, angiogenesis, and cancer: commentary re: A. C. Lockhart et al., Reduction of wound angiogenesis in patients treated with BMS-275291, a broad spectrum matrix metalloproteinase inhibitor. Clin Cancer Res Feb;9(2):551–554

  137. Sabo E, Meitner PA, Tavares R, Corless CL, Lauwers GY, Moss SF, Resnick MB (2008) Expression analysis of Barrett’s esophagus-associated high-grade dysplasia in laser capture microdissected archival tissue. Clin Cancer Res 15;14(20):6440–6448

  138. Sarbia M, Geddert H, Klump B, Kiel S, Iskender E, Gabbert HE (2004) Hypermethylation of tumor suppressor genes (p16INK4A, p14ARF and APC) in adenocarcinomas of the upper gastrointestinal tract. Int J Cancer 20;111(2):224–228

  139. Saretzki G, Von Zglinicki T (2002) Replicative aging, telomeres, and oxidative stress. Ann N Y Acad Sci 959:24–29

  140. Schlesinger Y, Straussman R, Keshet I, Farkash S, Hecht M, Zimmerman J, Eden E, Yakhini Z, Ben-Shushan E, Reubinoff BE, Bergman Y, Simon I, Cedar H (2007) Polycomb-mediated methylation on Lys27 of histone H3 pre-marks genes for de novo methylation in cancer. Nat Genet 39(2):232–236

  141. Schnell TG (2004) Acid suppression and adenocarcinoma of the esophagus: cause or cure. Am J Gastroneterol 99:1884–1886

  142. Schnell TG, Sontag SJ, Chejfec G, Aranha G, Metz A, O’Connell S, Seidel UJ, Sonnenberg A (2001) Long-term nonsurgical management of Barrett’s esophagus with high-grade dysplasia. Gastroenterology 120:1607–1619

  143. Schulmann K, Sterian A, Berki A, Yin J, Sato F, Xu Y, Olaru A, Wang S, Mori Y, Deacu E, Hamilton J, Kan T, Krasna MJ, Beer DG, Pepe MS, Abraham JM, Feng Z, Schmiegel W, Greenwald BD, Meltzer SJ (2005) Inactivation of p16, RUNX3, and HPP1 occurs early in Barrett’s-associated neoplastic progression and predicts progression risk. Oncogene 9;24(25):4138–4148

  144. Seery JP (2002) Stem cells of the oesophageal epithelium. J Cell Sci 1;115(Pt 9):1783–1789

  145. Shaheen NJ, Crosby MA, Bozymski EM, Sandler RS (2000) Is there publication bias in the reporting of cancer risk in Barrett’s esophagus? Gastroenterology 119(2):333–338

  146. Sharma P (2004) Review article: prevalence of Barrett’s oesophagus and metaplasia at the gastro-oesophageal junction. Aliment Pharmacol Ther 20(Suppl 5):48–54

  147. Sherr CJ (2004) Principles of tumor suppression Cell. 23;116(2):235–246

  148. Shimizu T, Bae YK, Muraoka O, Hibi M (2005) Interaction of Wnt and caudal-related genes in zebrafish posterior body formation Dev Biol 1;279(1):125–141

  149. Shirvani VN, Ouatu-Lascar R, Kaur BS, Omary MB, Triadafilopoulos G (2000) Cyclooxygenase 2 expression in Barrett’s esophagus and adenocarcinoma: Ex vivo induction by bile salts and acid exposure. Gastroenterology 118:487–496

  150. Sihvo EI, Salminen JT, Rantanen TK, Rämö OJ, Ahotupa M, Färkkilä M, Auvinen MI, Salo JA (2002) Oxidative stress has a role in malignant transformation in Barrett’s oesophagus. Int J Cancer 20;102(6):551–555

  151. Silberg DG, Furth EE, Taylor JK, Schuck T, Chiou T, Traber PG (1997) CDX1 protein expression in normal, metaplastic, and neoplastic human alimentary tract epithelium. Gastroenterology 113(2):478–486

  152. Sirieix PS, O’Donovan M, Brown J, Save V, Coleman N, Fitzgerald RC (2003) Surface expression of minichromosome maintenance proteins provides a novel method for detecting patients at risk for developing adenocarcinoma in Barrett’s esophagus. Clin Cancer Res 9(7):2560–2566

  153. Smith JM, Haigh J (1974) The hitch-hiking effect of a favourable gene. Genet Res 23(1):23–35

  154. Song S, Guha S, Liu K, Buttar NS, Bresalier RS (2007) COX-2 induction by unconjugated bile acids involves reactive oxygen species-mediated signalling pathways in Barrett’s oesophagus and oesophageal adenocarcinoma. Gut 56(11):1512–1521

  155. Souza RF, Lunsford T, Ramirez RD, Zhang X, Lee EL, Shen Y, Owen C, Shay JW, Morales C, Spechler SJ (2007) GERD is associated with shortened telomeres in the squamous epithelium of the distal esophagus. Am J Physiol Gastrointest Liver Physiol 293(1):G19–G24

  156. Souza RF, Krishnan K, Spechler SJ (2008) Acid, bile, and CDX: the ABCs of making Barrett’s metaplasia. Am J Physiol Gastrointest Liver Physiol 295(2):G211–G218

  157. Spechler SJ, Goyal RK (1996) The columnar-lined esophagus, intestinal metaplasia, and Norman Barrett. Gastroenterology 110(2):614–621

  158. Stairs DB, Nakagawa H, Klein-Szanto A, Mitchell SD, Silberg DG, Tobias JW, Lynch JP, Rustgi AK (2008) Cdx1 and c-Myc foster the initiation of transdifferentiation of the normal esophageal squamous epithelium toward Barrett’s esophagus. PLoS ONE 3(10):e3534 Epub 2008 Oct 27

  159. Suzuki H, Iijima K, Scobie G, Fyfe V, McColl KE (2005) Nitrate and nitrosative chemistry within Barrett’s oesophagus during acid reflux. Gut 54(11):1527–1535

  160. Takubo K, Aida J, Naomoto Y, Sawabe M, Arai T, Shiraishi H, Matsuura M, Ell C, May A, Pech O, Stolte M, Vieth M (2009) Cardiac rather than intestinal-type background in endoscopic resection specimens of minute Barrett adenocarcinoma. Hum Pathol 40(1):65–74

  161. Theisen J, Stein HJ, Feith M, Kauer WK, Dittler HJ, Pirchi D, Siewert JR (2006) Preferred location for the development of esophageal adenocarcinoma within a segment of intestinal metaplasia. Surg Endosc 20(2):235–238

  162. Tobey NA, Carson JL, Alkiek RA, Orlando RC (1996) Dilated intercellular spaces: a morphological feature of acid reflux-damaged human esophageal epithelium. Gastroenterology 111(5):1200–1205

  163. Trudgill NJ, Kapur KC, Riley SA (1999) Familial clustering of reflux symptoms. Am J Gastroenterol 94(5):1172–1178

  164. Tuynman JB, Lagarde SM, Ten Kate FJ, Richel DJ, van Lanschot JJ (2008) Met expression is an independent prognostic risk factor in patients with oesophageal adenocarcinoma. Br J Cancer 25;98(6):1102–1108

  165. Vaezi MF, Richter JE (1996) Role of acid and duodenogastroesophageal reflux in gastroesophageal reflux disease. Gastroenterology 111(5):1192–1199

  166. van Baal JW, Milano F, Rygiel AM, Bergman JJ, Rosmolen WD, van Deventer SJ, Wang KK, Peppelenbosch MP, Krishnadath KK (2005) A comparative analysis by SAGE of gene expression profiles of Barrett esophagus, normal squamous esophagus, and gastric cardia. Gastroenterology 129:1274–1281

  167. van Heemst D, den Reijer PM, Westendorp RG (2007) Ageing or cancer: a review on the role of caretakers and gatekeepers. Eur J Cancer 43(15):2144–2152

  168. Vaninetti NM, Geldenhuys L, Porter GA, Risch H, Hainaut P, Guernsey DL, Casson AG (2008) Inducible nitric oxide synthase, nitrotyrosine and p53 mutations in the molecular pathogenesis of Barrett’s esophagus and esophageal adenocarcinoma. Mol Carcinog 47(4):275–285

  169. von Rahden BH, Stein HJ, Feith M, Pühringer F, Theisen J, Siewert JR, Sarbia M (2006) Overexpression of TGF-beta1 in esophageal (Barrett’s) adenocarcinoma is associated with advanced stage of disease and poor prognosis. Mol Carcinog 45(10):786–794

  170. Wang S, Zhan M, Yin J, Abraham JM, Mori Y, Sato F, Xu Y, Olaru A, Berki AT, Li H, Schulmann K, Kan T, Hamilton JP, Paun B, Yu MM, Jin Z, Cheng Y, Ito T, Mantzur C, Greenwald BD, Meltzer SJ (2006) Transcriptional profiling suggests that Barrett’s metaplasia is an early intermediate stage in esophageal adenocarcinogenesis. Oncogene 1;25(23):3346–3356

  171. Wang KK, Sampliner RE, Practice Parameters Committee of the American College of Gastroenterology (2008) Updated guidelines 2008 for the diagnosis, surveillance and therapy of Barrett’s esophagus. Am J Gastroenterol 103(3):788–797

  172. Watson GA, Zhang X, Stang MT, Levy RM, Queiroz de Oliveira PE, Gooding WE, Christensen JG, Hughes SJ (2006) Inhibition of c-Met as a therapeutic strategy for esophageal adenocarcinoma. Neoplasia 8(11):949–955

  173. Watts GS, Tran NL, Berens ME, Bhattacharyya AK, Nelson MA, Montgomery EA, Sampliner RE (2007) Identification of Fn14/TWEAK receptor as a potential therapeutic target in esophageal adenocarcinoma. Int J Cancer 121(10):2132–2139

  174. Wong A, Fitzgerald RC (2005) Epidemiologic risk factors for Barrett’s esophagus and associated adenocarcinoma. Clin Gastroenterol Hepatol 3:1–10

  175. Wong DJ, Paulson TG, Prevo LJ, Galipeau PC, Longton G, Blount PL, Reid BJ (2001) p16(INK4a) lesions are common, early abnormalities that undergo clonal expansion in Barrett’s metaplastic epithelium. Cancer Res 15;61(22):8284–8289

  176. Wong NA, Wilding J, Bartlett S, Liu Y, Warren BF, Piris J, Maynard N, Marshall R, Bodmer WF (2005) CDX1 is an important molecular mediator of Barrett’s metaplasia. Proc Natl Acad Sci USA 24;102(21):7565–7570

  177. Yachimski PS, Mino-Kenudson M, Sherwood ME, Puricelli WP, Nishioka NS, Lauwers GY (2008) Cyclooxygenase-2 expression in esophageal epithelium before and after photodynamic therapy for Barrett’s esophagus. Gastroenterology 134(4) Suppl 1:82

  178. Yamamoto K, Arakawa T, Ueda N, Yamamoto S (1995) Transcriptional roles of nuclear factor kappa B and nuclear factor-interleukin-6 in the tumor necrosis factor alpha-dependent induction of cyclooxygenase-2 in MC3T3-E1 cells. J Biol Chem 29;270(52):31315–31320

  179. Ye W, Chow WH, Lagergren J, Yin L, Nyrén O (2001) Risk of adenocarcinomas of the esophagus and gastric cardia in patients with gastroesophageal reflux diseases and after antireflux surgery. Gastroenterology 121(6):1286–1293

  180. Yousef F, Cardwell C, Cantwell MM, Galway K, Johnston BT, Murray L (2008) The incidence of esophageal cancer and high-grade dysplasia in Barrett’s esophagus: a systematic review and meta-analysis. Am J Epidemiol 1;168(3):237–249

  181. Zaman MS, Hur C, Jones MP et al (2001) Concordance of reflux among monozygotic and dizygotic twins. Gastroenterology 120(Suppl 5):A418

Download references

Author information

Correspondence to Rebecca C. Fitzgerald.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

di Pietro, M., Fitzgerald, R.C. Barrett’s oesophagus: an ideal model to study cancer genetics. Hum Genet 126, 233–246 (2009). https://doi.org/10.1007/s00439-009-0665-2

Download citation

Keywords

  • Intestinal Metaplasia
  • GORD Symptom
  • Unconjugated Bile Acid
  • Oesophageal Epithelium
  • Columnar Metaplasia