Advertisement

Molecular Genetics and Genomics

, Volume 294, Issue 6, pp 1487–1498 | Cite as

Genetic diversity, structure and forensic characteristics of Hmong–Mien-speaking Miao revealed by autosomal insertion/deletion markers

  • Han Zhang
  • Guanglin He
  • Jianxin Guo
  • Zheng Ren
  • Hongling Zhang
  • Qiyan Wang
  • Jingyan Ji
  • Meiqing Yang
  • Jiang HuangEmail author
  • Chuan-Chao WangEmail author
Original Article

Abstract

Insertion/deletion (Indel) genetic markers have special features compared to other forensic-related markers, such as the low mutation rate and di-allelic markers with length polymorphism, playing an indispensable role in the forensic and population genetics, molecular anthropology and evolutionary biology. However, the genetic diversity, allelic frequency, forensic parameters and population genetic characteristics of the Indel markers in Hmong–Mien-speaking Guizhou Miao people are unclear due to the sparse sampling. Thus, we genotyped 30 forensic-related Indel markers in 311 unrelated healthy Miao individuals (149 females and 161 males) residing in the Guizhou Province in Southwest China using the Investigator DIPplex amplification system. All 30 Indels are in accordance with the no departures of Hardy–Weinberg equilibrium and linkage disequilibrium. The combined probability of discrimination and the probability of exclusion in Guizhou Miao population are 0.999999999948 and 0.9843, respectively. This observed ideal forensic parameter estimates indicate that this di-allelic Indel panel can be used as a supplementary tool in forensic retinue personal identification and complemented for autosomal STRs in the parentage testing in Miao population, especially used as the main tool in old or highly degraded samples in disaster victim identification. Eleven Indels show a high allele frequency difference between different continental populations and could be used as ancestry-informative markers in forensic ancestry inference. Phylogenetic relationships between Guizhou Miao and 68 worldwide populations based on the genetic polymorphisms of Indels are investigated via three different pairwise genetic distances, principal component analysis, multidimensional scaling analysis and phylogenetic relationship reconstructions. Analyses of the comprehensive population genetic relationship comparison reveal significant genetic differentiation of Chinese groups. Our results demonstrate that Guizhou Miao people are genetically closer related to the geographically adjacent populations, especially with Liangshan Yi, Guangxi Miao and Dong, but genetically distinct with Turkic-speaking populations. Comprehensive and precise genetic admixture and divergence history of Guizhou Miao and neighboring populations are needed to further investigate and reconstruct via high-density marker panel or whole-genome sequencing of modern or ancient Miao samples.

Keywords

Insertion/deletion Hmong–Mien-speaking Miao Forensic genetics Population genetics Genetic distance 

Notes

Funding

The work was funded by National Natural Science Foundation of China (81260467, 81660311, 31801040), Nanqiang Outstanding Young Talents Program of Xiamen University (X2123302), and Fundamental Research Funds for the Central Universities (ZK1144).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interests.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the Guizhou Medical University and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Data availability

All our data are submitted as supplementary materials.

Supplementary material

438_2019_1591_MOESM1_ESM.tif (2.1 mb)
Supplementary Figure S1. Forensic statistical frequency distribution of 30 Indels in Miao population (TIFF 2187 kb)
438_2019_1591_MOESM2_ESM.tif (3.9 mb)
Supplementary Figure S2. Heatmap of pairwise Nei’s genetic distances between Guizhou Miao and 68 worldwide populations (TIFF 3969 kb)
438_2019_1591_MOESM3_ESM.tif (3.9 mb)
Supplementary Figure S3. Heatmap of pairwise Cavalli-Sforza genetic distances among 69 populations (TIFF 3978 kb)
438_2019_1591_MOESM4_ESM.tif (1.8 mb)
Supplementary Figure S4. Heatmap of pairwise Nei’s genetic distances between Guizhou Miao and 28 Chinese populations belonging to seven language families (TIFF 1889 kb)
438_2019_1591_MOESM5_ESM.tif (1.7 mb)
Supplementary Figure S5. Heatmap of pairwise Cavalli-Sforza genetic distances among 29 Chinese populations belonging to seven language families (TIFF 1745 kb)
438_2019_1591_MOESM6_ESM.tif (1.7 mb)
Supplementary Figure S6. Heatmap on the basis of the pairwise Reynolds genetic distances showed the genetic similarities and differences among 9 Chinese populations belonging to seven language families (TIFF 1766 kb)
438_2019_1591_MOESM7_ESM.tif (2.1 mb)
Supplementary Figure S7. Principal component analyses showed the genetic similarities and differences among 29 Chinese populations belonging to seven language families on the basis of the genetic variations from the first three components (TIFF 2161 kb)
438_2019_1591_MOESM8_ESM.tif (2.1 mb)
Supplementary Figure S8. Genetic homogeneity and heterogeneity revealed by the second, third and fourth components in the principal component analyses (TIFF 2196 kb)
438_2019_1591_MOESM9_ESM.xlsx (86 kb)
Supplementary Table S1. The raw genotype data of 30 Indels included in the Investigator DIPplex amplification system in Miao population residing in Guizhou province, southwest China (XLSX 85 kb)
438_2019_1591_MOESM10_ESM.xlsx (12 kb)
Supplementary Table S2. The allele frequency distribution and corresponding statistical parameters of forensic interest of 30 Indels in the Miao population residing in Guizhou province, southwest China (XLSX 12 kb)
438_2019_1591_MOESM11_ESM.xlsx (15 kb)
Supplementary Table S3. The p values of Linkage Disequilibrium among 30 Indels included in the Investigator DIPplex amplification system (XLSX 15 kb)
438_2019_1591_MOESM12_ESM.xls (131 kb)
Supplementary Table S4. Comparative results of forensic efficiency of different commercial kits (XLS 131 kb)
438_2019_1591_MOESM13_ESM.xls (116 kb)
Supplementary Table S5. The Nei’s genetic distances between the Guizhou Miao and 68 worldwide populations on the basis of genetic variations of 30 Indels included in the Investigator DIPplex amplification system (XLS 116 kb)
438_2019_1591_MOESM14_ESM.xls (116 kb)
Supplementary Table S6. The Reynolds’s genetic distances between the Guizhou Miao and 68 worldwide populations on the basis of genetic variations of 30 Indels included in the Investigator DIPplex amplification system (XLS 116 kb)
438_2019_1591_MOESM15_ESM.xlsx (12 kb)
Supplementary Table S7. The Cavalli-Sforza chord measures between the Guizhou Miao and 68 worldwide populations on the basis of genetic variations of 30 Indels included in the Investigator DIPplex amplification system (XLSX 12 kb)

References

  1. Chen P, He G, Zou X, Wang M, Jia F, Bai H, Li J, Yu J, Han Y (2018a) Forensic characterization and genetic polymorphisms of 19 X-chromosomal STRs in 1344 Han Chinese individuals and comprehensive population relationship analyses among 20 Chinese groups. PLoS ONE 13:e0204286PubMedPubMedCentralGoogle Scholar
  2. Chen P, He G, Zou X, Wang M, Luo H, Yu L, Hu X, Xia M, Gao H, Yu J, Hou Y, Han Y (2018b) Genetic structure and polymorphisms of Gelao ethnicity residing in southwest China revealed by X-chromosomal genetic markers. Sci Rep 8:14585PubMedPubMedCentralGoogle Scholar
  3. Consortium HP-AS, Abdulla MA, Ahmed I, Assawamakin A, Bhak J, Brahmachari SK, Calacal GC, Chaurasia A, Chen CH, Chen J, Chen YT, Chu J, Cutiongco-de la Paz EM, De Ungria MC, Delfin FC, Edo J, Fuchareon S, Ghang H, Gojobori T, Han J, Ho SF, Hoh BP, Huang W, Inoko H, Jha P, Jinam TA, Jin L, Jung J, Kangwanpong D, Kampuansai J, Kennedy GC, Khurana P, Kim HL, Kim K, Kim S, Kim WY, Kimm K, Kimura R, Koike T, Kulawonganunchai S, Kumar V, Lai PS, Lee JY, Lee S, Liu ET, Majumder PP, Mandapati KK, Marzuki S, Mitchell W, Mukerji M, Naritomi K, Ngamphiw C, Niikawa N, Nishida N, Oh B, Oh S, Ohashi J, Oka A, Ong R, Padilla CD, Palittapongarnpim P, Perdigon HB, Phipps ME, Png E, Sakaki Y, Salvador JM, Sandraling Y, Scaria V, Seielstad M, Sidek MR, Sinha A, Srikummool M, Sudoyo H, Sugano S, Suryadi H, Suzuki Y, Tabbada KA, Tan A, Tokunaga K, Tongsima S, Villamor LP, Wang E, Wang Y, Wang H, Wu JY, Xiao H, Xu S, Yang JO, Shugart YY, Yoo HS, Yuan W, Zhao G, Zilfalil BA, Indian Genome Variation C (2009) Mapping human genetic diversity in Asia. Science 326:1541–1545Google Scholar
  4. Cummings MP (2004) PHYLIP (Phylogeny Inference Package). In: Hancock JM, Zvelebil MJ (eds) Dictionary of bioinformatics and computational biology. Wiley, Hoboken, pp 164–166Google Scholar
  5. Du W, Peng Z, Feng C, Zhu B, Wang B, Wang Y, Liu C, Chen L (2017) Forensic efficiency and genetic variation of 30 Indels in Vietnamese and Nigerian populations. Oncotarget 8:88934–88940PubMedPubMedCentralGoogle Scholar
  6. Excoffier L, Lischer HE (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour 10:564–567Google Scholar
  7. Fan GY, Ye Y, Hou YP (2016) Detecting a hierarchical genetic population structure via multi-Indel markers on the X chromosome. Sci Rep 6:32178PubMedPubMedCentralGoogle Scholar
  8. Fondevila M, Phillips C, Santos C, Pereira R, Gusmao L, Carracedo A, Butler JM, Lareu MV, Vallone PM (2012) Forensic performance of two insertion-deletion marker assays. Int J Legal Med 126:725–737PubMedGoogle Scholar
  9. Genomes Project C, Abecasis GR, Altshuler D, Auton A, Brooks LD, Durbin RM, Gibbs RA, Hurles ME, McVean GA (2010) A map of human genome variation from population-scale sequencing. Nature 467:1061–1073Google Scholar
  10. Genomes Project C, Abecasis GR, Auton A, Brooks LD, DePristo MA, Durbin RM, Handsaker RE, Kang HM, Marth GT, McVean GA (2012) An integrated map of genetic variation from 1,092 human genomes. Nature 491:56–65Google Scholar
  11. Genomes Project C, Auton A, Brooks LD, Durbin RM, Garrison EP, Kang HM, Korbel JO, Marchini JL, McCarthy S, McVean GA, Abecasis GR (2015) A global reference for human genetic variation. Nature 526:68–74Google Scholar
  12. Gouy A, Zieger M (2017) STRAF-A convenient online tool for STR data evaluation in forensic genetics. Forensic Sci Int Genet 30:148–151PubMedGoogle Scholar
  13. Guo Y, Shen C, Meng H, Dong Q, Kong T, Yang C, Wang H, Jin R, Zhu B (2016) Population Differentiations and Phylogenetic Analysis of Tibet and Qinghai Tibetan Groups Based on 30 Indel Loci. DNA Cell Biol 35:787–794PubMedGoogle Scholar
  14. Han Y, He G, Gong S, Chen J, Jiang Z, Chen P (2019) Genetic diversity and haplotype analysis of Guizhou Miao identified with 19 X-chromosomal short tandem repeats. Int J Legal Med 133:99–101PubMedGoogle Scholar
  15. Hansen J (2005) Using SPSS for windows and macintosh: analyzing and understanding data. Am Stat 59:113–113Google Scholar
  16. He G, Li Y, Zou X, Zhang Y, Li H, Wang M, Wu J (2018a) X-chromosomal STR-based genetic structure of Sichuan Tibetan minority ethnicity group and its relationships to various groups. Int J Legal Med 132:409–413PubMedGoogle Scholar
  17. He G, Wang Z, Zou X, Chen X, Liu J, Wang M, Hou Y (2018b) Genetic diversity and phylogenetic characteristics of Chinese Tibetan and Yi minority ethnic groups revealed by non-CODIS STR markers. Sci Rep 8:5895PubMedPubMedCentralGoogle Scholar
  18. He G, Wang Z, Zou X, Wang M, Liu J, Wang S, Ye Z, Chen P, Hou Y (2019) Tai–Kadai-speaking Gelao population: forensic features, genetic diversity and population structure. Forensic Sci Int Genet 40:e231–e239PubMedGoogle Scholar
  19. Huang J, Luo H, Wei W, Hou Y (2014) A novel method for the analysis of 20 multi-Indel polymorphisms and its forensic application. Electrophoresis 35:487–493PubMedGoogle Scholar
  20. Jian H, Wang L, Wang H, Bai X, Lv M, Liang W (2019) Population genetic analysis of 30 insertion-deletion (INDEL) loci in a Qinghai Tibetan group using the Investigator DIPplex Kit. Int J Legal Med 133:1039–1041PubMedGoogle Scholar
  21. Kalinowski ST (2002) Evolutionary and statistical properties of three genetic distances. Mol Ecol 11:1263–1273PubMedGoogle Scholar
  22. Kovach WL (2007) MVSP-A Multivariate Statistical Package for Windows, ver. 3.1. Kovach Computing Services, PentraethGoogle Scholar
  23. Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874PubMedPubMedCentralGoogle Scholar
  24. LaRue BL, Ge J, King JL, Budowle B (2012) A validation study of the Qiagen Investigator DIPplex(R) kit; an INDEL-based assay for human identification. Int J Legal Med 126:533–540PubMedGoogle Scholar
  25. Li JZ, Absher DM, Tang H, Southwick AM, Casto AM, Ramachandran S, Cann HM, Barsh GS, Feldman M, Cavalli-Sforza LL, Myers RM (2008) Worldwide human relationships inferred from genome-wide patterns of variation. Science 319:1100–1104PubMedGoogle Scholar
  26. Mallick S, Li H, Lipson M, Mathieson I, Gymrek M, Racimo F, Zhao M, Chennagiri N, Nordenfelt S, Tandon A, Skoglund P, Lazaridis I, Sankararaman S, Fu Q, Rohland N, Renaud G, Erlich Y, Willems T, Gallo C, Spence JP, Song YS, Poletti G, Balloux F, van Driem G, de Knijff P, Romero IG, Jha AR, Behar DM, Bravi CM, Capelli C, Hervig T, Moreno-Estrada A, Posukh OL, Balanovska E, Balanovsky O, Karachanak-Yankova S, Sahakyan H, Toncheva D, Yepiskoposyan L, Tyler-Smith C, Xue Y, Abdullah MS, Ruiz-Linares A, Beall CM, Di Rienzo A, Jeong C, Starikovskaya EB, Metspalu E, Parik J, Villems R, Henn BM, Hodoglugil U, Mahley R, Sajantila A, Stamatoyannopoulos G, Wee JT, Khusainova R, Khusnutdinova E, Litvinov S, Ayodo G, Comas D, Hammer MF, Kivisild T, Klitz W, Winkler CA, Labuda D, Bamshad M, Jorde LB, Tishkoff SA, Watkins WS, Metspalu M, Dryomov S, Sukernik R, Singh L, Thangaraj K, Paabo S, Kelso J, Patterson N, Reich D (2016) The Simons genome diversity project: 300 genomes from 142 diverse populations. Nature 538:201–206PubMedPubMedCentralGoogle Scholar
  27. Mehta B, Daniel R, Phillips C, McNevin D (2017) Forensically relevant SNaPshot((R)) assays for human DNA SNP analysis: a review. Int J Legal Med 131:21–37PubMedGoogle Scholar
  28. Meng HT, Zhang YD, Shen CM, Yuan GL, Yang CH, Jin R, Yan JW, Wang HD, Liu WJ, Jing H, Zhu BF (2015) Genetic polymorphism analyses of 30 Indels in Chinese Xibe ethnic group and its population genetic differentiations with other groups. Sci Rep 5:8260PubMedPubMedCentralGoogle Scholar
  29. Mills RE, Luttig CT, Larkins CE, Beauchamp A, Tsui C, Pittard WS, Devine SE (2006) An initial map of insertion and deletion (INDEL) variation in the human genome. Genome Res 16:1182–1190PubMedPubMedCentralGoogle Scholar
  30. Nei M (1978) The theory of genetic distance and evolution of human races. Jinrui Idengaku Zasshi. Jpn J Hum Genet 23:341–369Google Scholar
  31. Pereira R, Phillips C, Alves C, Amorim A, Carracedo A, Gusmao L (2009) A new multiplex for human identification using insertion/deletion polymorphisms. Electrophoresis 30:3682–3690PubMedGoogle Scholar
  32. Pereira R, Alves C, Aler M, Amorim A, Arevalo C, Betancor E, Braganholi D, Bravo ML, Brito P, Builes JJ, Burgos G, Carvalho EF, Castillo A, Catanesi CI, Cicarelli RMB, Coufalova P, Dario P, D’Amato ME, Davison S, Ferragut J, Fondevila M, Furfuro S, Garcia O, Gaviria A, Gomes I, Gonzalez E, Gonzalez-Linan A, Gross TE, Hernandez A, Huang Q, Jimenez S, Jobim LF, Lopez-Parra AM, Marino M, Marques S, Martinez-Cortes G, Masciovecchio V, Parra D, Penacino G, Pinheiro MF, Porto MJ, Posada Y, Restrepo C, Ribeiro T, Rubio L, Sala A, Santurtun A, Solis LS, Souto L, Streitemberger E, Torres A, Vilela-Lamego C, Yunis JJ, Yurrebaso I, Gusmao L (2018) A GHEP-ISFG collaborative study on the genetic variation of 38 autosomal Indels for human identification in different continental populations. Forensic Sci Int Genet 32:18–25PubMedGoogle Scholar
  33. Reynolds J, Weir BS, Cockerham CC (1983) Estimation of the coancestry coefficient: basis for a short-term genetic distance. Genetics 105:767–779PubMedPubMedCentralGoogle Scholar
  34. Romsos EL, Vallone PM (2015) Rapid PCR of STR markers: applications to human identification. Forensic Sci Int Genet 18:90–99PubMedGoogle Scholar
  35. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425PubMedGoogle Scholar
  36. Shen C, Zhu B, Yao T, Li Z, Zhang Y, Yan J, Wang B, Bie X, Tai F (2016) A 30-Indel assay for genetic variation and population structure analysis of Chinese Tujia group. Sci Rep 6:36842PubMedPubMedCentralGoogle Scholar
  37. Sun H, Xu S, Long F, Luo J, Lin X, Jin L, Li L, Li S (2016a) Forensic and population genetic analysis of Han, Miao, Tujia and Gelao populations from Zunyi (Southwest China) on 15 autosomal short tandem repeat loci. Forensic Sci Int Genet 25:e20–e21PubMedGoogle Scholar
  38. Sun K, Ye Y, Luo T, Hou Y (2016b) Multi-Indel Analysis for Ancestry Inference of Sub-Populations in China. Sci Rep 6:39797PubMedPubMedCentralGoogle Scholar
  39. Vilsen SB, Tvedebrink T, Eriksen PS, Bosting C, Hussing C, Mogensen HS, Morling N (2018) Stutter analysis of complex STR MPS data. Forensic Sci Int Genet 35:107–112PubMedGoogle Scholar
  40. Wang M, Wang Z, He G, Jia Z, Liu J, Hou Y (2018) Genetic characteristics and phylogenetic analysis of three Chinese ethnic groups using the Huaxia Platinum System. Sci Rep 8:2429PubMedPubMedCentralGoogle Scholar
  41. Wei YL, Qin CJ, Dong H, Jia J, Li CX (2014) A validation study of a multiplex INDEL assay for forensic use in four Chinese populations. Forensic Sci Int Genet 9:e22–25PubMedGoogle Scholar
  42. Wen B, Li H, Gao S, Mao X, Gao Y, Li F, Zhang F, He Y, Dong Y, Zhang Y, Huang W, Jin J, Xiao C, Lu D, Chakraborty R, Su B, Deka R, Jin L (2005) Genetic structure of Hmong-Mien speaking populations in East Asia as revealed by mtDNA lineages. Mol Biol Evol 22:725–734PubMedGoogle Scholar
  43. Xie T, Guo Y, Chen L, Fang Y, Tai Y, Zhou Y, Qiu P, Zhu B (2018) A set of autosomal multiple Indel markers for forensic application and population genetic analysis in the Chinese Xinjiang Hui group. Forensic Sci Int Genet 35:1–8PubMedGoogle Scholar
  44. Zaumsegel D, Rothschild MA, Schneider PM (2013) A 21 marker insertion deletion polymorphism panel to study biogeographic ancestry. Forensic Sci Int Genet 7:305–312PubMedGoogle Scholar
  45. Zhang L, Zhao Y, Guo F, Liu Y, Wang B (2015) Population data for 15 autosomal STR loci in the Miao ethnic minority from Guizhou Province, Southwest China. Forensic Sci Int Genet 16:e3–e4PubMedGoogle Scholar
  46. Zhang S, Zhu Q, Chen X, Zhao Y, Zhao X, Yang Y, Gao Z, Fang T, Wang Y, Zhang J (2018) Forensic applicability of multi-allelic Indels with mononucleotide homopolymer structures. Electrophoresis 39:2136–2143PubMedGoogle Scholar
  47. Zhao X, Chen X, Zhao Y, Zhang S, Gao Z, Yang Y, Wang Y, Zhang J (2018) Construction and forensic genetic characterization of 11 autosomal haplotypes consisting of 22 tri-allelic indels. Forensic Sci Int Genet 34:71–80PubMedGoogle Scholar
  48. Zhu B, Lan Q, Guo Y, Xie T, Fang Y, Jin X, Cui W, Chen C, Zhou Y, Li X (2018) Population genetic diversity and clustering analysis for Chinese Dongxiang group with 30 autosomal Indel loci simultaneously analyzed. Front Genet 9:279PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Han Zhang
    • 1
  • Guanglin He
    • 2
    • 3
  • Jianxin Guo
    • 3
  • Zheng Ren
    • 1
  • Hongling Zhang
    • 1
  • Qiyan Wang
    • 1
  • Jingyan Ji
    • 1
  • Meiqing Yang
    • 1
  • Jiang Huang
    • 1
    Email author
  • Chuan-Chao Wang
    • 3
    Email author
  1. 1.Department of Forensic MedicineGuizhou Medical UniversityGuiyangChina
  2. 2.Institute of Forensic Medicine, West China School of Basic Science and Forensic MedicineSichuan UniversityChengduChina
  3. 3.Department of Anthropology and Ethnology, Institute of AnthropologyXiamen UniversityXiamenChina

Personalised recommendations