Advertisement

Molecular Genetics and Genomics

, Volume 294, Issue 6, pp 1421–1440 | Cite as

Combination of multi-locus genome-wide association study and QTL mapping reveals genetic basis of tassel architecture in maize

  • Yanli Wang
  • Jie Chen
  • Zhongrong Guan
  • Xiaoxiang Zhang
  • Yinchao Zhang
  • Langlang Ma
  • Yiming Yao
  • Huanwei Peng
  • Qian Zhang
  • Biao Zhang
  • Peng Liu
  • Chaoying Zou
  • Yaou Shen
  • Fei GeEmail author
  • Guangtang PanEmail author
Original Article

Abstract

Maize tassel architecture is a complex quantitative trait that is significantly correlated with biomass yield and grain yield. The present study evaluated the major trait of maize tassel architecture, namely, tassel branch number (TBN), in an association population of 359 inbred lines and an IBM Syn 10 population of 273 doubled haploid lines across three environments. Approximately 43,958 high-quality single nucleotide polymorphisms were utilized to detect significant QTNs associated with TBN based on new multi-locus genome-wide association study methods. There were 30, 38, 73, 40, 47, and 53 QTNs associated with tassel architecture that were detected using the FastmrEMMA, FastmrMLM, EM-BLASSO, mrMLM, pkWMEB, and pLARmEB models, respectively. Among these QTNs, 51 were co-identified by at least two of these methods. In addition, 12 QTNs were consistently detected across multiple environments. Furthermore, 19 QTLs distributed on chromosomes 1, 2, 3, 4, 6, and 7 were detected in 3 environments and the BLUP model based on 6618 bin markers, which explained 3.64–10.96% of the observed phenotypic variations in TBN. Of these, three QTLs were co-detected in two environments. One QTN associated with TBN was localized to one QTL. Approximately 55 candidate genes were detected by common QTNs and LD criteria. One candidate gene, Zm00001d016615, was identified as a putative target of the RA1 gene. Meanwhile, RA1 was previously validated to plays an important role in tassel development. In addition, the newly identified candidate genes Zm00001d003939, Zm00001d030212, Zm00001d011189, and Zm00001d042794 have been reported to involve in a spikelet meristem identity module. The findings of the present study improve our understanding of the genetic basis of tassel architecture in maize.

Keywords

Maize Tassel branch number Multi-locus GWAS QTNs QTL 

Notes

Acknowledgements

We thank LetPub (http://www.letpub.com) for its linguistic assistance during the preparation of this manuscript. We thank the “CMplot” package (https://github.com/YinLiLin/R-CMplot) for drawing the figure.

Funding

The National Basic Research Program of China (2014CB138200) and the Young Scientists Fund of Sichuan Province (2016JQ0008) supported this study.

Compliance with ethical standards

Conflict of interest

G Pan, F Ge, and Y Shen designed the experiments. Y Wang, J Chen, Z Guan, X Zhang, F Ge, and Y Zhang performed the analysis. Y Wang, F Ge, Y Shen, L Ma, Y Yao, H Peng, H Lin, G Pan, Q Zhang, and B Zhang drafted the manuscript. All of the authors critically revised and approval the final version of this manuscript. All of the authors have no conflicts of interest to declare.

Ethical approval

This study did not involve human participants.

Supplementary material

438_2019_1586_MOESM1_ESM.xlsx (485 kb)
Supplementary material 1 (XLSX 486 kb)

References

  1. Atwell S, Huang YS, Vilhjalmsson BJ, Willems G, Horton M, Li Y, Meng D, Platt A, Tarone AM, Hu TT, Jiang R, Muliyati NW, Zhang X, Amer MA, Baxter I, Brachi B, Chory J, Dean C, Debieu M, de Meaux J, Ecker JR, Faure N, Kniskern JM, Jones JD, Michael T, Nemri A, Roux F, Salt DE, Tang C, Todesco M, Traw MB, Weigel D, Marjoram P, Borevitz JO, Bergelson J, Nordborg M (2010) Genome-wide association study of 107 phenotypes in Arabidopsis thaliana inbred lines. Nature 465:627–631PubMedPubMedCentralGoogle Scholar
  2. Austeclinio L, José B (2000) Inbreeding in two maize subpopulation selected for tassel size. Sci Agric 57:487–490Google Scholar
  3. Ayers KL, Cordell HJ (2010) SNP selection in genome-wide and candidate gene studies via penalized logistic regression. Genet Epidemiol 34:879–891PubMedPubMedCentralGoogle Scholar
  4. Bates D, Maechler M, Bolker B, Walker S (2014) lme4: linear mixed-effects models using Eigen and S4. R Package Version 1:1–23Google Scholar
  5. Benjamini Y, Yekutieli D (2001) The control of the false discovery rate in multiple testing under dependency. Ann Stat 29:1165–1188Google Scholar
  6. Berke TG, Rocheford TR (1999) Quantitative trait loci for tassel traits in maize. Cell Biol Mol Genet Crop Sci 39:1439–1443Google Scholar
  7. Bortiri E, Chuck G, Vollbrecht E, Rocheford T, Martienssen R, Hake S (2006) ramosa2 encodes a LATERAL ORGAN BOUNDARY domain protein that determines the fate of stem cells in branch meristems of maize. Plant Cell 18:574–585PubMedPubMedCentralGoogle Scholar
  8. Brachi B, Faure N, Horton M, Flahauw E, Vazquez A, Nordborg M, Bergelson J, Cuguen J, Roux F (2010) Linkage and association mapping of Arabidopsis thaliana flowering time in nature. PLoS Genet 6:e1000940PubMedPubMedCentralGoogle Scholar
  9. Bradbury PJ, Zhang Z, Kroon DE, Casstevens TM, Ramdoss Y, Buckler ES (2007) TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics 23:2633–2635Google Scholar
  10. Brown PJ, Upadyayula N, Mahone GS, Tian F, Bradbury PJ, Myles S, Holland JB, Flint-Garcia S, McMullen MD, Buckler ES, Rocheford TR (2011) Distinct genetic architectures for male and female inflorescence traits of maize. PLoS Genet 7:e1002383PubMedPubMedCentralGoogle Scholar
  11. Buckler ES, Holland JB, Bradbury PJ, Acharya CB, Brown PJ, Browne C, Ersoz E, Flint-Garcia S, Garcia A, Glaubitz JC, Goodman MM, Harjes C, Guill K, Kroon DE, Larsson S, Lepak NK, Li H, Mitchell SE, Pressoir G, Peiffer JA, Rosas MO, Rocheford TR, Romay MC, Romero S, Salvo S, Sanchez Villeda H, da Silva HS, Sun Q, Tian F, Upadyayula N, Ware D, Yates H, Yu J, Zhang Z, Kresovich S, McMullen MD (2009) The genetic architecture of maize flowering time. Science 325:714–718PubMedGoogle Scholar
  12. Cassani E, Landoni M, Pilu R (2006) Characterization of the Ra1 maize gene involved in inflorescence architecture. Sex Plant Reprod 19:145–150Google Scholar
  13. Chen Y, Hou M, Liu L, Wu S, Shen Y, Ishiyama K, Kobayashi M, McCarty DR, Tan BC (2014a) The maize DWARF1 encodes a gibberellin 3-oxidase and is dual localized to the nucleus and cytosol. Plant Physiol 166:2028–2039PubMedPubMedCentralGoogle Scholar
  14. Chen Z, Wang B, Dong X, Liu H, Ren L, Chen J, Hauck A, Song W, Lai J (2014b) An ultra-high density bin-map for rapid QTL mapping for tassel and ear architecture in a large F(2) maize population. BMC Genomics 15:433PubMedPubMedCentralGoogle Scholar
  15. Chen ZJ, Yang C, Tang DG, Zhang L, Zhang L, Qu JT, Liu J (2017) Dissection of the genetic architecture for tassel branch number by QTL analysis in two related populations in maize. J Integr Agric 16:1432–1442Google Scholar
  16. Chuck G, Muszynski M, Kellogg E, Hake S, Schmidt RJ (2002) The Control of Spikelet Meristem Identity by the branched silkless1 Gene in Maize. Science 298:1238–1240PubMedGoogle Scholar
  17. Chuck G, Whipple C, Jackson D, Hake S (2010) The maize SBP-box transcription factor encoded by tasselsheath4 regulates bract development and the establishment of meristem boundaries. Development 137:1243–1250PubMedGoogle Scholar
  18. Chuck GS, Brown PJ, Meeley R, Hake S (2014) Maize SBP-box transcription factors unbranched2 and unbranched3 affect yield traits by regulating the rate of lateral primordia initiation. Proc Natl Acad Sci 111:18775–18780PubMedGoogle Scholar
  19. Duncan WG, Williams WA, Loomis RS (1967) Tassels and productivity of maize. Crop Sci 7:37–39Google Scholar
  20. Eichler EE, Flint J, Gibson G, Kong A, Leal SM, Moore JH, Nadeau JH (2010) Missing heritability and strategies for finding the underlying causes of complex disease. Nat Rev Genet 11:446–450PubMedPubMedCentralGoogle Scholar
  21. Evans MM (2007) The indeterminate gametophyte1 gene of maize encodes a LOB domain protein required for embryo Sac and leaf development. Plant Cell 19:46–62PubMedPubMedCentralGoogle Scholar
  22. Eveland AL, Goldshmidt A, Pautler M, Morohashi K, Liseron-Monfils C, Lewis MW, Kumari S, Hiraga S, Yang F, Unger-Wallace E, Olson A, Hake S, Vollbrecht E, Grotewold E, Ware D, Jackson D (2014) Regulatory modules controlling maize inflorescence architecture. Genome Res 24:431–443PubMedPubMedCentralGoogle Scholar
  23. Gachomo EW, Jimenez-Lopez JC, Baptiste LJ, Kotchoni SO (2014) GIGANTUS1 (GTS1), a member of Transducin/WD40 protein superfamily, controls seed germination, growth and biomass accumulation through ribosome-biogenesis protein interactions in Arabidopsis thaliana. BMC Plant Biol 14:37PubMedPubMedCentralGoogle Scholar
  24. Geraldi I, Miranda F, Vencovsky R (1985) Estimates of genetic parameters for tassel characters in maize (Zea mays L.) and breeding perspectives. Maydica 30:1–14Google Scholar
  25. Gotoh I, Adachi M, Nishida E (2001) Identification and characterization of a novel MAP kinase kinase kinase, MLTK. J Biol Chem 276:4276–4286PubMedGoogle Scholar
  26. Gou X, He K, Yang H, Yuan T, Lin H, Clouse SD, Li J (2010) Genome-wide cloning and sequence analysis of leucine-rich repeat receptor-like protein kinase genes in Arabidopsis thaliana. BMC Genomics 11:19PubMedPubMedCentralGoogle Scholar
  27. Guei RG, Wassom CE (1996) Genetic analysis of tassel size and leaf senescence and their relationships with yield in two tropical Lowland maize populations. Afr Crop Sci J 4(3):275–281Google Scholar
  28. Hoggart CJ, Whittaker JC, De Iorio M, Balding DJ (2008) Simultaneous analysis of all SNPs in genome-wide and re-sequencing association studies. PLoS Genet 4:e1000130PubMedPubMedCentralGoogle Scholar
  29. Hubisz MJ, Falush D, Stephens M, Pritchard JK (2009) Inferring weak population structure with the assistance of sample group information. Mol Ecol Resour 9:1322–1332PubMedPubMedCentralGoogle Scholar
  30. Hunter RB, Daynard TB, Hume DJ, Tanner JW, Curtis JD, Kannenberg LW (1969) Effect of tassel removal on grain yield of corn (Zea mays L). Crop Sci 9:405–406Google Scholar
  31. Jiao Y, Peluso P, Shi J, Liang T, Stitzer MC, Wang B, Campbell MS, Stein JC, Wei X, Chin CS, Guill K, Regulski M, Kumari S, Olson A, Gent J, Schneider KL, Wolfgruber TK, May MR, Springer NM, Antoniou E, McCombie WR, Presting GG, McMullen M, Ross-Ibarra J, Dawe RK, Hastie A, Rank DR, Ware D (2017) Improved maize reference genome with single-molecule technologies. Nature 546:524–527PubMedGoogle Scholar
  32. Knapp SJ, Stroup WW, Ross WM (1985) Exact confidence intervals for heritability on a progeny mean basis. Crop Sci 25:192–194Google Scholar
  33. Korte A, Farlow A (2013) The advantages and limitations of trait analysis with GWAS: a review. Plant Methods 9:29PubMedPubMedCentralGoogle Scholar
  34. Li H, Ye G, Wang J (2007) A modified algorithm for the improvement of composite interval mapping. Genetics 175:361–374PubMedPubMedCentralGoogle Scholar
  35. Li H, Peng Z, Yang X, Wang W, Fu J, Wang J, Han Y, Chai Y, Guo T, Yang N, Liu J, Warburton ML, Cheng Y, Hao X, Zhang P, Zhao J, Liu Y, Wang G, Li J, Yan J (2013) Genome-wide association study dissects the genetic architecture of oil biosynthesis in maize kernels. Nat Genet 45:43–50PubMedGoogle Scholar
  36. Li Y, Tan X, Wang M, Li B, Zhao Y, Wu C, Rui Q, Wang J, Liu Z, Bao Y (2017) Exocyst subunit SEC3A marks the germination site and is essential for pollen germination in Arabidopsis thaliana. Sci Rep 7:40279PubMedPubMedCentralGoogle Scholar
  37. Li C, Huang Y, Huang R, Wu Y, Wang W (2018) The genetic architecture of amylose biosynthesis in maize kernel. Plant Biotechnol J 16:688–695PubMedGoogle Scholar
  38. Liu X-Q, Rong J-Y, Liu X-Y (2008) Best linear unbiased prediction for linear combinations in general mixed linear models. J Multivar Anal 99:1503–1517Google Scholar
  39. Liu H, Niu Y, Gonzalez-Portilla PJ, Zhou H, Wang L, Zuo T, Qin C, Tai S, Jansen C, Shen Y, Lin H, Lee M, Ware D, Zhang Z, Lubberstedt T, Pan G (2015a) An ultra-high-density map as a community resource for discerning the genetic basis of quantitative traits in maize. BMC Genomics 16:1078PubMedPubMedCentralGoogle Scholar
  40. Liu X, Huang M, Fan B, Buckler ES, Zhang Z (2015b) Iterative usage of fixed and random effect models for powerful and efficient genome-wide association studies. PLoS Genet 12:1–24Google Scholar
  41. Lu Y, Zhang S, Shah T, Xie C, Hao Z, Li X, Farkhari M, Ribaut JM, Cao M, Rong T, Xu Y (2010) Joint linkage-linkage disequilibrium mapping is a powerful approach to detecting quantitative trait loci underlying drought tolerance in maize. Proc Natl Acad Sci USA 107:19585–19590PubMedGoogle Scholar
  42. Lu Y, Xu J, Yuan Z, Hao Z, Xie C, Li X, Shah T, Lan H, Zhang S, Rong T, Xu Y (2011) Comparative LD mapping using single SNPs and haplotypes identifies QTL for plant height and biomass as secondary traits of drought tolerance in maize. Mol Breed 30:407–418Google Scholar
  43. Ma L, Liu M, Yan Y, Qing C, Zhang X, Zhang Y, Long Y, Wang L, Pan L, Zou C, Li Z, Wang Y, Peng H, Pan G, Jiang Z, Shen Y (2018) Genetic dissection of maize embryonic callus regenerative capacity using multi-locus genome-wide association studies. Front Plant Sci 9:561PubMedPubMedCentralGoogle Scholar
  44. Maher B (2008) Personal genomes: the case of the missing heritability. Nature 456:18–21PubMedGoogle Scholar
  45. Manichaikul A, Moon JY, Sen S, Yandell BS, Broman KW (2009) A model selection approach for the identification of quantitative trait loci in experimental crosses, allowing epistasis. Genetics 181:1077–1086PubMedPubMedCentralGoogle Scholar
  46. McCouch SR (1997) Report on QTL nomenclature. Rice Genet Newsl 14:11–13Google Scholar
  47. McMullen MD, Kresovich S, Villeda HS, Bradbury P, Li H, Sun Q, Flint-Garcia S, Thornsberry J, Acharya C, Bottoms C, Brown P, Browne C, Eller M, Guill K, Harjes C, Kroon D, Lepak N, Mitchell SE, Peterson B, Pressoir G, Romero S, Oropeza Rosas M, Salvo S, Yates H, Hanson M, Jones E, Smith S, Glaubitz JC, Goodman M, Ware D, Holland JB, Buckler ES (2009) Genetic properties of the maize nested association mapping population. Science 325:737–740PubMedGoogle Scholar
  48. McSteen P, Leyser O (2005) Shoot branching. Annu Rev Plant Biol 56:353–374PubMedGoogle Scholar
  49. Mickelson SM, Stuber CS, Senior L, Kaeppler SM (2002) Quantitative trait loci controlling leaf and tassel traits in a B73 × Mo17 population of maize. Crop Sci 42:1902–1909Google Scholar
  50. Miller KS (1981) On the Inverse of the Sum of Matrices. Math Mag 54(2):67–72Google Scholar
  51. Mock JJ, Schuetz SH (1974) Inheritance of tassel branch number in maize. Crop Sci 14:886–888Google Scholar
  52. Moser G, Lee SH, Hayes BJ, Goddard ME, Wray NR, Visscher PM (2015) Simultaneous discovery, estimation and prediction analysis of complex traits using a Bayesian mixture model. PLoS Genet 11:e1004969PubMedPubMedCentralGoogle Scholar
  53. Pace J, Gardner C, Romay C, Ganapathysubramanian B, Lubberstedt T (2015) Genome-wide association analysis of seedling root development in maize (Zea mays L.). BMC Genomics 16:47PubMedPubMedCentralGoogle Scholar
  54. Piepho HP, Gauch HG Jr (2001) Marker pair selection for mapping quantitative trait loci. Genetics 157:433–444PubMedPubMedCentralGoogle Scholar
  55. Qi J, Liu X, Shen D, Miao H, Xie B, Li X, Zeng P, Wang S, Shang Y, Gu X, Du Y, Li Y, Lin T, Yuan J, Yang X, Chen J, Chen H, Xiong X, Huang K, Fei Z, Mao L, Tian L, Stadler T, Renner SS, Kamoun S, Lucas WJ, Zhang Z, Huang S (2013) A genomic variation map provides insights into the genetic basis of cucumber domestication and diversity. Nat Genet 45:1510–1515PubMedGoogle Scholar
  56. Ren WL, Wen YJ, Dunwell JM, Zhang YM (2018) pKWmEB: integration of Kruskal–Wallis test with empirical Bayes under polygenic background control for multi-locus genome-wide association study. Heredity 120:208–218PubMedGoogle Scholar
  57. Satoh-Nagasawa N, Nagasawa N, Malcomber S, Sakai H, Jackson D (2006) A trehalose metabolic enzyme controls inflorescence architecture in maize. Nature 441:227–230PubMedPubMedCentralGoogle Scholar
  58. Schuetz SH, Mock JJ (1978) Genetics of tassel branch number in maize and its implications for a selection program for small tassel size. Theor Appl Genet 53:265–271PubMedGoogle Scholar
  59. Segura V, Vilhjalmsson BJ, Platt A, Korte A, Seren U, Long Q, Nordborg M (2012) An efficient multi-locus mixed-model approach for genome-wide association studies in structured populations. Nat Genet 44:825–830PubMedPubMedCentralGoogle Scholar
  60. Sharma PP, Dhawan NL (1968) Correlation between tassel and ear characters and yield in maize. Ind J Genet Plant Breed 28:196–204Google Scholar
  61. Shrestha J (2013) Agro-morphological characterization of maize inbred lines. Sky J Agric Res 2:85–87Google Scholar
  62. Tamba CL, Ni YL, Zhang YM (2017) Iterative sure independence screening EM-Bayesian LASSO algorithm for multi-locus genome-wide association studies. PLoS Comput Biol 13:e1005357PubMedPubMedCentralGoogle Scholar
  63. Tanaka W, Pautler M, Jackson D, Hirano HY (2013) Grass meristems II: inflorescence architecture, flower development and meristem fate. Plant Cell Physiol 54:313–324PubMedGoogle Scholar
  64. Tian F, Bradbury PJ, Brown PJ, Hung H, Sun Q, Flint-Garcia S, Rocheford TR, McMullen MD, Holland JB, Buckler ES (2011) Genome-wide association study of leaf architecture in the maize nested association mapping population. Nat Genet 43:159–162PubMedGoogle Scholar
  65. Upadyayula N, da Silva HS, Bohn MO, Rocheford TR (2006a) Genetic and QTL analysis of maize tassel and ear inflorescence architecture. Theor Appl Genet 112:592–606PubMedGoogle Scholar
  66. Upadyayula N, Wassom J, Bohn MO, Rocheford TR (2006b) Quantitative trait loci analysis of phenotypic traits and principal components of maize tassel inflorescence architecture. Theor Appl Genet 113:1395–1407PubMedGoogle Scholar
  67. Veit B, Schmidt RJ, Hake S, Yanofsky MF (1993) Maize floral development: new genes and old mutants. Plant Cell 5:1205–1215PubMedPubMedCentralGoogle Scholar
  68. Vollbrecht E, Springer PS, Goh L, Buckler ES, Martienssen R (2005) Architecture of floral branch systems in maize and related grasses. Nature 436:1119–1126PubMedPubMedCentralGoogle Scholar
  69. Walsh J, Freeling M (1999) The liguleless2 gene of maize functions during the transition from the vegetative to the reproductive shoot apex. Plant J 19:489–495PubMedGoogle Scholar
  70. Wang D, Li Y, Wang Y, Liu C, Liu Z, Peng B, Tan W, Zhang Y, Sun B, Shi Y, Song Y, Wang T, Li Y (2011) Major quantitative trait loci analysis of tassel primary branch number and tassel weight in maize. Chin Bull Bot 46:11–20Google Scholar
  71. Wang B, Tseng E, Regulski M, Clark TA, Hon T, Jiao Y, Lu Z, Olson A, Stein JC, Ware D (2016a) Unveiling the complexity of the maize transcriptome by single-molecule long-read sequencing. Nat Commun 7:11708PubMedPubMedCentralGoogle Scholar
  72. Wang SB, Feng JY, Ren WL, Huang B, Zhou L, Wen YJ, Zhang J, Dunwell JM, Xu S, Zhang YM (2016b) Improving power and accuracy of genome-wide association studies via a multi-locus mixed linear model methodology. Sci Rep 6:19444PubMedPubMedCentralGoogle Scholar
  73. Watson GC (1892) Removing tassels from corn. Cornell Agric 40:147–155Google Scholar
  74. Wen Y-J, Zhang H, Zhang J, Feng J-Y, Huang B, Dunwell JM, Zhang Y-M, Wu R (2016) A fast multi-locus random-SNP-effect EMMA for genome-wide association studies. https://www.semanticscholar.org/paper/A-fast-multi-locus-random-SNP-effect-EMMA-for-Wen-Zhang/300ee5e3f85a0e20356d1da3933d8e8da23cc5f5:1-22. Accessed 26 Sept 2016
  75. Wen YJ, Zhang H, Ni YL, Huang B, Zhang J, Feng JY, Wang SB, Dunwell JM, Zhang YM, Wu R (2017) Methodological implementation of mixed linear models in multi-locus genome-wide association studies. Brief Bioinform 18:906PubMedPubMedCentralGoogle Scholar
  76. Wu X, Li Y, Shi Y, Song Y, Zhang D, Li C, Buckler ES, Li Y, Zhang Z, Wang T (2016) Joint-linkage mapping and GWAS reveal extensive genetic loci that regulate male inflorescence size in maize. Plant Biotechnol J 14:1551–1562PubMedPubMedCentralGoogle Scholar
  77. Xu S, Yang Z, Zhang E, Jiang Y, Pan L, Chen Q, Xie Z, Xu C (2014) Nucleotide diversity of Maize ZmBT1 gene and association with starch physicochemical properties. PLoS One 9:e103627PubMedPubMedCentralGoogle Scholar
  78. Yang X, Gao S, Xu S, Zhang Z, Prasanna BM, Li L, Li J, Yan J (2010a) Characterization of a global germplasm collection and its potential utilization for analysis of complex quantitative traits in maize. Mol Breed 28:511–526Google Scholar
  79. Yang X, Yan J, Shah T, Warburton ML, Li Q, Li L, Gao Y, Chai Y, Fu Z, Zhou Y, Xu S, Bai G, Meng Y, Zheng Y, Li J (2010b) Genetic analysis and characterization of a new maize association mapping panel for quantitative trait loci dissection. Theor Appl Genet 121:417–431PubMedGoogle Scholar
  80. Yang J, Zaitlen NA, Goddard ME, Visscher PM, Price AL (2014a) Advantages and pitfalls in the application of mixed-model association methods. Nat Genet 46:100–106PubMedPubMedCentralGoogle Scholar
  81. Yang N, Lu Y, Yang X, Huang J, Zhou Y, Ali F, Wen W, Liu J, Li J, Yan J (2014b) Genome wide association studies using a new nonparametric model reveal the genetic architecture of 17 agronomic traits in an enlarged maize association panel. PLoS Genet 10:e1004573PubMedPubMedCentralGoogle Scholar
  82. Yi N, Xu S (2008) Bayesian LASSO for quantitative trait loci mapping. Genetics 179:1045–1055PubMedPubMedCentralGoogle Scholar
  83. Yu J, Arbelbide M, Bernardo R (2005) Power of in silico QTL mapping from phenotypic, pedigree, and marker data in a hybrid breeding program. Theor Appl Genet 110:1061–1067PubMedGoogle Scholar
  84. Yu J, Pressoir G, Briggs WH, Vroh Bi I, Yamasaki M, Doebley JF, McMullen MD, Gaut BS, Nielsen DM, Holland JB, Kresovich S, Buckler ES (2006) A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nat Genet 38:203–208PubMedGoogle Scholar
  85. Yu J, Holland JB, McMullen MD, Buckler ES (2008) Genetic design and statistical power of nested association mapping in maize. Genetics 178:539–551PubMedPubMedCentralGoogle Scholar
  86. Zhang Y-M, Tamba CL (2018) A fast mrMLM algorithm for multi-locus genome-wide association studies.  https://doi.org/10.1101/341784
  87. Zhang Z, Ersoz E, Lai CQ, Todhunter RJ, Tiwari HK, Gore MA, Bradbury PJ, Yu J, Arnett DK, Ordovas JM, Buckler ES (2010) Mixed linear model approach adapted for genome-wide association studies. Nat Genet 42:355–360PubMedPubMedCentralGoogle Scholar
  88. Zhang X, Zhang H, Li LJ, Lan H, Ren ZY, Liu D, Wu L, Liu H, Jaqueth J, Li B, Pan G, Gao S (2016) Characterizing the population structure and genetic diversity of maize breeding germplasm in Southwest China using genome-wide SNP markers. BMC Genomics 17:697PubMedPubMedCentralGoogle Scholar
  89. Zhang J, Feng JY, Ni YL, Wen YJ, Niu Y, Tamba CL, Yue C, Song Q, Zhang YM (2017) pLARmEB: integration of least angle regression with empirical Bayes for multilocus genome-wide association studies. Heredity 118:517–524PubMedPubMedCentralGoogle Scholar
  90. Zhang Y, Liu P, Zhang X, Zheng Q, Chen M, Ge F, Li Z, Sun W, Guan Z, Liang T, Zheng Y, Tan X, Zou C, Peng H, Pan G, Shen Y (2018) Multi-locus genome-wide association study reveals the genetic architecture of stalk lodging resistance-related traits in maize. Front Plant Sci 9:611PubMedPubMedCentralGoogle Scholar
  91. Zhang YM, Jia Z, Dunwell JM (2019) The applications of new multi-locus GWAS methodologies in the genetic dissection of complex traits. Front Plant Sci 10:100PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Yanli Wang
    • 1
  • Jie Chen
    • 2
  • Zhongrong Guan
    • 5
  • Xiaoxiang Zhang
    • 1
  • Yinchao Zhang
    • 1
  • Langlang Ma
    • 1
  • Yiming Yao
    • 1
  • Huanwei Peng
    • 3
  • Qian Zhang
    • 4
  • Biao Zhang
    • 4
  • Peng Liu
    • 1
  • Chaoying Zou
    • 1
  • Yaou Shen
    • 1
  • Fei Ge
    • 1
    Email author
  • Guangtang Pan
    • 1
    Email author
  1. 1.Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Maize Research InstituteSichuan Agricultural UniversityChengduChina
  2. 2.Crop Research InstituteSichuan Academy of Agricultural SciencesChengduChina
  3. 3.Institute of Animal NutritionSichuan Agricultural UniversityChengduChina
  4. 4.Institute of Agro-products Processing Science and TechnologySichuan Academy of Agricultural SciencesChengduChina
  5. 5.Chongqing Yudongnan Academy of Agricultural SciencesChongqingChina

Personalised recommendations