Advertisement

QTL analysis of nodule traits and the identification of loci interacting with the type III secretion system in soybean

  • Jingyi Zhu
  • Jinhui Wang
  • Qingying Li
  • Jieqi Wang
  • Yang Liu
  • Jianyi Li
  • Lin Chen
  • Yan Shi
  • Shuping Li
  • Yongqian Zhang
  • Xueying Liu
  • Chao Ma
  • Hanxi Liu
  • Yingnan Wen
  • Zhijun Sun
  • Huilin Chang
  • Nannan Wang
  • Candong Li
  • Zhengong Yin
  • Zhenbang Hu
  • Xiaoxia Wu
  • Hongwei Jiang
  • Chunyan Liu
  • Zhaoming QiEmail author
  • Qingshan ChenEmail author
  • Dawei XinEmail author
Original Article

Abstract

Symbiotic nitrogen fixation is the main source of nitrogen for soybean growth. Since the genotypes of rhizobia and soybean germplasms vary, the nitrogen-fixing ability of soybean after inoculation also varies. A few studies have reported that quantitative trait loci (QTLs) control biological nitrogen fixation traits, even soybean which is an important crop. The present study reported that the Sinorhizobium fredii HH103 gene rhcJ belongs to the tts (type III secretion) cluster and that the mutant HH103ΩrhcJ can clearly decrease the number of nodules in American soybeans. However, few QTLs of nodule traits have been identified. This study used a soybean (Glycine max (L.) Merr.) ‘Charleston’ × ‘Dongnong 594’ (C × D, n = 150) recombinant inbred line (RIL). Nodule traits were analysed in the RIL population after inoculation with S. fredii HH103 and the mutant HH103ΩrhcJ. Plants were grown in a greenhouse with a 16-h light cycle at 26 °C and an 8-h dark cycle at 18 °C. Then, 4 weeks after inoculation, plants were harvested for evaluation of nodule traits. Through QTL mapping, 16 QTLs were detected on 8 chromosomes. Quantitative PCR (qRT-PCR) and RNA-seq analysis determined that the genes Glyma.04g060600, Glyma.18g159800 and Glyma.13g252600 might interact with rhcJ.

Keywords

Soybean QTL HH103ΩrhcJ Nodule number Nodule dry weight 

Notes

Acknowledgements

Financial support was received from the University Project of Young Scientist (UNPYSCT-2015011), the Foundation for University Key Teachers from the Education Department of Heilongjiang Province in China (Grant number: 1254G011), the National Natural Science Foundation of China (Grant numbers: 31400074, 31471516, 31271747, and 30971809), the Natural Science Foundation of Heilongjiang Province of China (Grant number: ZD201213), the Heilongjiang Postdoctoral Science Foundation (Grant number: LBH-Q16014), the Harbin Science Technology Project (Grant numbers: 2013RFQXJ005 and 2014RFXXJ012), the Ministry of Science and Technology of the People’s Republic of China Project (Grant number: 2017YFE0111000), and the National Key R&D Program of China (Grant numbers: 2016YFD0100500, 2016YFD0100300, and 2016YFD0100201-21).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

438_2019_1553_MOESM1_ESM.docx (113 kb)
Supplementary material 1 (DOCX 112 kb)

References

  1. Abraham A, Chandler DE (2017) Tracing the evolutionary history of the CAP superfamily of proteins using amino acid sequence homology and conservation of splice sites. J Mol Evol 85:137–157CrossRefGoogle Scholar
  2. Caldwell B (1966) Inheritance of a strain-specific ineffective nodulation in soybeans 1. Crop Sci 6:427–428CrossRefGoogle Scholar
  3. Chen QS, Zhang ZC, Liu CY, Wang WQ, Wen-Bin LI (2005) Construction and analysis of soybean genetic map using recombinant inbred line of Charleston × Dongnong 594. JIA 4:801–805Google Scholar
  4. Da-Wei X, Sha L, Zhi-Ping X, Hann DR, Lea S, Thomas B, Christian S (2012) Functional analysis of NopM, a novel E3 ubiquitin ligase (NEL) domain effector of Rhizobium sp. strain NGR234. PLoS Pathogens 8:e1002707CrossRefGoogle Scholar
  5. de Lyra MDC, López-Baena FJ, Madinabeitia N, Vinardell JM, Espuny MDR, Cubo MT, Bellogín RA, Ruiz-Sainz JE, Ollero FJ (2006) Inactivation of the Sinorhizobium fredii HH103 rhcJ gene abolishes nodulation outer proteins (Nops) secretion and decreases the symbiotic capacity with soybean. Int Microbiol 9:125–133Google Scholar
  6. Delessert C, Kazan K, Wilson IW, Straeten DVD, Manners J, Dennis ES, Dolferus R (2005) The transcription factor ATAF2 represses the expression of pathogenesis-related genes in Arabidopsis. Plant J 43:745–757CrossRefGoogle Scholar
  7. Devine T, Kuykendall L (1996) Host genetic control of symbiosis in soybean (Glycine max L.). Plant Soil 186:173–187CrossRefGoogle Scholar
  8. Devine TE, Kilen TC, O’Neill JJ (1991) Genetic linkage of the phytophthora resistance gene Rps2 and the nodulation response gene Rj2 in soybean. Crop Sci 31:713–715CrossRefGoogle Scholar
  9. Du Q, Gong C, Wang Q, Zhou D, Yang H, Pan W, Li B, Zhang D (2016) Genetic architecture of growth traits in Populus revealed by integrated quantitative trait locus (QTL) analysis and association studies. New Phytol 209:1067–1082CrossRefGoogle Scholar
  10. Fehr WR, Caviness CE (1977) Stages of soybean development. Coop Ext Serv Spec Rep 80. Iowa State University, AmesGoogle Scholar
  11. Figurski DH, Helinski DR (1979) Replication of an origin-containing derivative of plasmid RK2 dependent on a plasmid function provided in trans. Proc Natl Acad Sci USA 76:1648–1652CrossRefGoogle Scholar
  12. Ge YY, Xiang QW, Wagner C, Zhang D, Xie ZP, Staehelin C (2016) The type 3 effector NopL of Sinorhizobium sp. strain NGR234 is a mitogen-activated protein kinase substrate. J Exp Bot 67:2483CrossRefGoogle Scholar
  13. Harper J, Nickell C (1995) Genetic analysis of nonnodulating soybean mutants in a hypernodulated background. Soybean Genet Newsl 22:185–190Google Scholar
  14. Hong JK, Hwang IS, Hwang BK (2017) Functional roles of the pepper leucine-rich repeat protein and its interactions with pathogenesis-related and hypersensitive-induced proteins in plant cell death and immunity. Planta 246:1–14CrossRefGoogle Scholar
  15. Hwang S, Ray JD, Cregan PB, King CA, Davies MK, Purcell LC (2014) Genetics and mapping of quantitative traits for nodule number, weight, and size in soybean (Glycine max L. [Merr.]). Euphytica 195:419–434CrossRefGoogle Scholar
  16. Journet EP, El-Gachtouli N, Vernoud V, Billy FD, Pichon M, Dedieu A, Arnould C, Morandi D, Barker DG, Gianinazzi-Pearson V (2001) Medicago truncatula ENOD11: a novel RPRP-encoding early nodulin gene expressed during mycorrhization in arbuscule-containing cells. Mol Plant Microbe Interact 14:737–748CrossRefGoogle Scholar
  17. Lanubile A, Muppirala UK, Severin AJ, Marocco A, Munkvold GP (2015) Transcriptome profiling of soybean (Glycine max) roots challenged with pathogenic and non-pathogenic isolates of Fusarium oxysporum. BMC Genom 16:1089CrossRefGoogle Scholar
  18. Lassaletta L, Billen G, Grizzetti B, Anglade J, Garnier J (2014) 50 year trends in nitrogen use efficiency of world cropping systems: the relationship between yield and nitrogen input to cropland. Environ Res Lett 9:105011–105020CrossRefGoogle Scholar
  19. Marie C, Deakin WJ, Ojanen-Reuhs T, Diallo E, Reuhs B, Broughton WJ, Perret X (2004) TtsI, a key regulator of Rhizobium species NGR234 is required for type III-dependent protein secretion and synthesis of rhamnose-rich polysaccharides. Mol Plant Microbe Interact 17:958–966CrossRefGoogle Scholar
  20. Nicolas MF, Arrabal Arias CA, Hungria M (2002) Genetics of nodulation and nitrogen fixation in Brazilian soybean cultivars. Biol Fertil Soils 36:109–117CrossRefGoogle Scholar
  21. Nicolás MF, Hungria M, Arias CAA (2006) Identification of quantitative trait loci controlling nodulation and shoot mass in progenies from two Brazilian soybean cultivars. Field Crop Res 95:355–366CrossRefGoogle Scholar
  22. Ohlson EW, Seido SL, Mohammed S, Santos CA, Timko MP (2017) QTL mapping of ineffective nodulation and nitrogen utilization-related traits in the IC-1 mutant of Cowpea. Crop Sci 58:1–9Google Scholar
  23. Oldroyd GE, Downie JA (2004) Calcium, kinases and nodulation signalling in legumes. Nat Rev Mol Cell Biol 5:566–576CrossRefGoogle Scholar
  24. Oldroyd GE, Downie JA (2006) Nuclear calcium changes at the core of symbiosis signalling. Curr Opin Plant Biol 9:351–357CrossRefGoogle Scholar
  25. Perret X, Kobayashi H, Colladovides J (2003) Regulation of expression of symbiotic genes in Rhizobium sp. NGR234. Indian J Exp Biol 41:1101–1113Google Scholar
  26. Qi Z, Huang L, Zhu R, Xin D, Liu C, Han X, Jiang H, Hong W, Hu G, Zheng H (2014) A high-density genetic map for soybean based on specific length amplified fragment sequencing. PLoS One 9:e104871CrossRefGoogle Scholar
  27. Quandt J, Hynes MF (1993) Versatile suicide vectors which allow direct selection for gene replacement in gram-negative bacteria. Gene 127:15–21CrossRefGoogle Scholar
  28. Santos MA, Geraldi IO, Garcia AAF, Bortolatto N, Schiavon A, Hungria M (2013) Mapping of QTLs associated with biological nitrogen fixation traits in soybean. Hereditas 150:17–25CrossRefGoogle Scholar
  29. Skorpil P, Saad M, Nm Kobayashi H, Ares-Orpel F, Broughton W, Deakin W (2010) NopP, a phosphorylated effector of Rhizobium sp. strain NGR234, is a major determinant of nodulation of the tropical legumes Flemingia congesta and Tephrosia vogelii. Mol Microbiol 57:1304–1317CrossRefGoogle Scholar
  30. Tampakaki AP (2014) Commonalities and differences of T3SSs in rhizobia and plant pathogenic bacteria. Front Plant Sci 5:114CrossRefGoogle Scholar
  31. Tang F, Yang S, Liu J, Zhu H (2015) Rj4, a gene controlling nodulation specificity in soybeans, encodes a thaumatin-like protein, but not the one previously reported. Plant Physiol 170:26–35CrossRefGoogle Scholar
  32. Tanya P, Srinives P, Toojinda T, Vanavichit A, Lee SH (2005) Identification of SSR markers associated with N2-fixation components in soybean [Glycine max (L.) Merr.]. Korean J Genet 27:351–359Google Scholar
  33. Tellis M, Mathur M, Gurjar G, Kadoo N, Gupta V (2017) Identification and functionality prediction of Pathogenesis related protein 1 from legume family. Proteins 85:2066–2080CrossRefGoogle Scholar
  34. Tsukui T, Eda S, Kaneko T, Sato S, Okazaki S, Kakizakichiba K, Itakura M, Mitsui H, Yamashita A, Terasawa K (2013) The type III secretion system of Bradyrhizobium japonicum USDA122 mediates symbiotic incompatibility with Rj2 soybean plants. Appl Environ Microb 79:1048CrossRefGoogle Scholar
  35. Vest G (1970) Rj3 A gene conditioning ineffective nodulation in soybean 1. Crop Sci 10:34–35CrossRefGoogle Scholar
  36. Vest G, Caldwell B (1972) Rj4—a gene conditioning ineffective nodulation in soybean 1. Crop Sci 12:692–693CrossRefGoogle Scholar
  37. Vuong T, Nickell C, Harper J (1996) Genetic and allelism analyses of hypernodulation soybean mutants from two genetic backgrounds. Crop Sci 36:1153–1158CrossRefGoogle Scholar
  38. Wang S, Basten CJ, Zeng ZB (2005) Windows QTL cartographer: ver. 2.5. Department of Statistics, North Carolina State University, RaleighGoogle Scholar
  39. Wang D, Yang S, Tang F, Zhu H (2012) Symbiosis specificity in the legume—rhizobial mutualism. Cell Microbiol 14:334–342CrossRefGoogle Scholar
  40. Wang J, Wang J, Liu C, Ma C, Li C, Zhang Y, Qi Z, Zhu R, Shi Y, Zou J (2018) Identification of soybean genes whose expression is affected by the Ensifer fredii HH103 effector protein NopP. Int J Mol Sci 19(11):3438CrossRefGoogle Scholar
  41. Wassem R, Kobayashi H, Kambara K, Le Quéré A, Walker GC, Broughton WJ, Deakin WJ (2008) TtsI regulates symbiotic genes in Rhizobium species NGR234 by binding to tts boxes. Mol Microbiol 68:736–748CrossRefGoogle Scholar
  42. Westhoek A, Field E, Rehling F, Mulley G, Webb I, Poole PS, Turnbull LA (2017) Policing the legume-Rhizobium symbiosis: a critical test of partner choice. Sci Rep 7:1419CrossRefGoogle Scholar
  43. Williams L, Lynch D (1954) Inheritance of a non-nodulating character in the soybean. Agron J 46:28–29CrossRefGoogle Scholar
  44. Williams B, Williams R, Kantartzi S, Meksem K, Barakat A, Lightfoot DA, Kassem A (2012) Genetic analysis of root and shoot traits in the soybean [Glycine max (L.) Merr.] Essex’ by Forrest’ recombinant inbred line population. J Plant Genome Sci 1:1–9CrossRefGoogle Scholar
  45. Yang S, Tang F, Gao M, Krishnan HB, Zhu H (2010) R gene-controlled host specificity in the legume–rhizobia symbiosis. Proc Natl Acad Sci USA 107:18735–18740CrossRefGoogle Scholar
  46. Zhang Y, Liu X, Chen L, Fu Y, Li C, Qi Z, Zou J, Zhu R, Li S, Wei W (2018) Mining for genes encoding proteins associated with NopL of Sinorhizobium fredii HH103 using quantitative trait loci in soybean (Glycine max Merr.) recombinant inbred lines. Plant Soil. 431:245–255CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Jingyi Zhu
    • 1
  • Jinhui Wang
    • 1
  • Qingying Li
    • 1
  • Jieqi Wang
    • 1
  • Yang Liu
    • 1
  • Jianyi Li
    • 1
  • Lin Chen
    • 1
  • Yan Shi
    • 1
  • Shuping Li
    • 1
  • Yongqian Zhang
    • 1
  • Xueying Liu
    • 1
  • Chao Ma
    • 1
  • Hanxi Liu
    • 1
  • Yingnan Wen
    • 1
  • Zhijun Sun
    • 1
  • Huilin Chang
    • 1
    • 2
  • Nannan Wang
    • 1
  • Candong Li
    • 1
  • Zhengong Yin
    • 1
    • 3
  • Zhenbang Hu
    • 1
  • Xiaoxia Wu
    • 1
  • Hongwei Jiang
    • 1
  • Chunyan Liu
    • 1
  • Zhaoming Qi
    • 1
    Email author
  • Qingshan Chen
    • 1
    Email author
  • Dawei Xin
    • 1
    Email author
  1. 1.Key Laboratory of Soybean Biology of Chinese Ministry of Education, Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry, College of ScienceNortheast Agricultural UniversityHarbinPeople’s Republic of China
  2. 2.Suihua Branch of Heilongjiang Academy of Agricultural SciencesSuihuaChina
  3. 3.Crop Breeding InstituteHeilongjiang Academy of Agricultural SciencesHarbinPeople’s Republic of China

Personalised recommendations