Galactitol catabolism in Sinorhizobium meliloti is dependent on a chromosomally encoded sorbitol dehydrogenase and a pSymB-encoded operon necessary for tagatose catabolism

  • MacLean G. Kohlmeier
  • Catherine E. White
  • Jane E. Fowler
  • Turlough M. Finan
  • Ivan J. OresnikEmail author
Original Article


The legume endosymbiont Sinorhizobium meliloti can utilize a broad range of carbon compounds to support its growth. The linear, six-carbon polyol galactitol is abundant in vascular plants and is metabolized in S. meliloti by the contribution of two loci SMb21372-SMb21377 and SMc01495-SMc01503 which are found on pSymB and the chromosome, respectively. The data suggest that several transport systems, including the chromosomal ATP-binding cassette (ABC) transporter smoEFGK, contribute to the uptake of galactitol, while the adjacent gene smoS encodes a protein for oxidation of galactitol into tagatose. Subsequently, genes SMb21374 and SMb21373, encode proteins that phosphorylate and epimerize tagatose into fructose-6-phosphate, which is further metabolized by the enzymes of the Entner–Doudoroff pathway. Of note, it was found that SMb21373, which was annotated as a 1,6-bis-phospho-aldolase, is homologous to the E. coli gene gatZ, which is annotated as encoding the non-catalytic subunit of a tagatose-1,6-bisphosphate aldolase heterodimer. When either of these genes was introduced into an Agrobacterium tumefaciens strain that carries a tagatose-6-phosphate epimerase mutation, they are capable of complementing the galactitol growth deficiency associated with this mutation, strongly suggesting that these genes are both epimerases. Phylogenetic analysis of the protein family (IPR012062) to which these enzymes belong, suggests that this misannotation is systemic throughout the family. S. meliloti galactitol catabolic mutants do not exhibit symbiotic deficiencies or the inability to compete for nodule occupancy.


Rhizobium Metabolism Galactitol Tagatose Epimerase GatZ 



This work was funded by Natural Sciences and Engineering Research Council of Canada (NSERC) Discovery Grants awarded to IJO and TMF. MGK acknowledges support from the University of Manitoba Faculty of Science Award and the University of Manitoba Faculty of Graduate Studies GETS program.


This study was funded by Natural Sciences and Engineering Research Council of Canada (NSERC) Discovery Grants awarded to IJO and TMF.

Compliance with ethical standards

Conflict of interest

The authors wish to declare that they have no conflicts of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Supplementary material

438_2019_1545_MOESM1_ESM.docx (18 kb)
Supplementary material 1 (DOCX 17 KB)
438_2019_1545_MOESM2_ESM.eps (9.6 mb)
Fig. S1 Digital version of the phylogeny displayed in Figure 8, zooming in reveals organism names and bootstrap values (EPS 9819 KB)


  1. Alexeyev MF (1999) The pKNOCK series of broad-host-range mobilizable suicide vectors for gene knockout and targeted DNA insertion into the chromosome of gram-negative bacteria. Biotechniques 26:824–828CrossRefGoogle Scholar
  2. Bieleski RL (1982) Sugar Alcohols. In: Loewus FA, Tanner W (eds) Plant carbohydrates I: intracellular carbohydrates. Springer, Berlin, pp 158–192CrossRefGoogle Scholar
  3. Brinkkötter A, Klöß H, Alpert CA, Lengeler JW (2000) Pathways for the utilization of N-acetyl-galactosamine and galactosamine in Escherichia coli. Mol Microbiol 37:125–135CrossRefGoogle Scholar
  4. Brinkkötter A, Shakeri-Garakani A, Lengeler JW (2002) Two class II d-tagatose-bisphosphate aldolases from enteric bacteria. Arch Microbiol 177:410–419CrossRefGoogle Scholar
  5. Capela D, Barloy-Hubler F, Gouzy J, Bothe G, Ampe F, Batut J, Boistard P, Becker A, Boutry M, Cadieu E, Dréano S, Gloux S, Godrie T, Goffeau A, Kahn D, Kiss E, Lelaure V, Masuy D, Pohl T, Portetelle D, Pühler A, Purnelle B, Ramsperger U, Renard C, Thébault P, Vandenbol M, Weidner S, Galibert F (2001) Analysis of the chromosome sequence of the legume symbiont Sinorhizobium meliloti strain 1021. Proc Natl Acad Sci 98:9877–9882CrossRefGoogle Scholar
  6. Capella-Gutiérrez S, Silla-Martínez JM, Gabaldón T (2009) trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25:1972–1973CrossRefGoogle Scholar
  7. Charles TC, Finan TM (1990) Genetic map of Rhizobium meliloti megaplasmid pRmeSU47b. J Bacteriol 172:2469–2476CrossRefGoogle Scholar
  8. Charles TC, Finan TM (1991) Analysis of a 1600-kilobase Rhizobium meliloti megaplasmid using defined deletions generated in vivo. Genetics 127:5–20Google Scholar
  9. Chen I-MA, Markowitz VM, Palaniappan K, Szeto E, Chu K, Huang J, Ratner A, Pillay M, Hadjithomas M, Huntemann M, Mikhailova N, Ovchinnikova G, Ivanova NN, Kyrpides NC (2016) Supporting community annotation and user collaboration in the integrated microbial genomes (IMG) system. BMC Genom 17:307CrossRefGoogle Scholar
  10. Clark SRD, Oresnik IJ, Hynes MF (2001) RpoN of Rhizobium leguminosarum bv. viciae strain VF39SM plays a central role in FnrN-dependent microaerobic regulation of genes involved in nitrogen fixation. Mol Gen Genet 264:623–633CrossRefGoogle Scholar
  11. Cold Spring Harbor Protocols (2006) LB (Luria-Bertani) liquid medium. Cold Spring Harb Protoc 2006:pdb.rec8141CrossRefGoogle Scholar
  12. diCenzo GC, Finan TM (2017) The divided bacterial genome: structure, function, and evolution. Microbiol Mol Biol Rev 81:e00019–e00017CrossRefGoogle Scholar
  13. diCenzo GC, Checcucci A, Bazzicalupo M, Mengoni A, Viti C, Dziewit L, Finan TM, Galardini M, Fondi M (2016) Metabolic modelling reveals the specialization of secondary replicons for niche adaptation in Sinorhizobium meliloti. Nat Commun 7:12219CrossRefGoogle Scholar
  14. Ding H, Yip CB, Geddes BA, Oresnik IJ, Hynes MF (2012) Glycerol utilization by Rhizobium leguminosarum requires an ABC transporter and affects competition for nodulation. Microbiology 158:1369–1378CrossRefGoogle Scholar
  15. Downie JA, Young JPW (2001) The ABC of symbiosis. Nature 412:597–598CrossRefGoogle Scholar
  16. Finan TM, Hartweig E, LeMieux K, Bergman K, Walker GC, Signer ER (1984) General transduction in Rhizobium meliloti. J Bacteriol 159:120–124Google Scholar
  17. Finan TM, Hirsch AM, Leigh JA, Johansen E, Kuldau GA, Deegan S, Walker GC, Singer ER (1985) Symbiotic mutants of Rhizobium meliloti that uncouple plant from bacterial differentiation. Cell 40:869–877CrossRefGoogle Scholar
  18. Finan TM, Kunkel B, De Vos GF, Singer ER (1986) Second symbiotic megaplasmid in Rhizobium meliloti carrying exopolysaccharide and thiamine synthesis genes. J Bacteriol 167:66–72CrossRefGoogle Scholar
  19. Finn RD, Attwood TK, Babbitt PC, Bateman A, Bork P, Bridge AJ, Chang H-Y, Dosztányi Z, El-Gebali S, Fraser M, Gough J, Haft D, Holliday GL, Huang H, Huang X, Letunic I, Lopez R, Lu S, Marchler-Bauer A, Mi H, Mistry J, Natale DA, Necci M, Nuka G, Orengo CA, Park Y, Pesseat S, Piovesan D, Potter SC, Rawlings ND, Redaschi N, Richardson L, Rivoire C, Sangrador-Vegas A, Sigrist C, Sillitoe I, Smithers B, Squizzato S, Sutton G, Thanki N, Thomas PD, Tosatto Silvio CE, Wu CH, Xenarios I, Yeh L-S, Young S-Y, Mitchell AL (2017) InterPro in 2017—beyond protein family and domain annotations. Nucleic Acids Res 45:D190–D199CrossRefGoogle Scholar
  20. Fry J, Wood M, Poole PS (2001) Investigation of myo-inositol catabolism in Rhizobium leguminosarum bv. viciae and its effect on nodulation competitiveness. Mol Plant Microbe Interact 14:1016–1025CrossRefGoogle Scholar
  21. Gage DJ, Long SR (1998) α-galactoside uptake in Rhizobium meliloti: isolation and characterization of agpA, a gene encoding a periplasmic binding protein required for melibiose and raffinose utilization. J Bacteriol 180:5739–5748Google Scholar
  22. Galibert F, Finan TM, Long SR, Pühler A, Abola P, Ampe F, Barloy-Hubler F, Barnett MJ, Becker A, Boistard P, Bothe G, Boutry M, Bowser L, Buhrmester J, Cadieu E, Capela D, Chain P, Cowie A, Davis RW, Dréano S, Federspiel NA, Fisher RF, Gloux S, Godrie T, Goffeau A, Golding B, Gouzy J, Gurjal M, Hernandez-Lucas I, Hong A, Huizar L, Hyman RW, Jones T, Kahn D, Kahn ML, Kalman S, Keating DH, Kiss E, Komp C, Lelaure V, Masuy D, Palm C, Peck MC, Pohl TM, Portetelle D, Purnelle B, Ramsperger U, Surzycki R, Thébault P, Vandenbol M, Vorhölter F-J, Weidner S, Wells DH, Wong K, Yeh K-C, Batut J (2001) The composite genome of the legume symbiont Sinorhizobium meliloti. Science 293:668–672CrossRefGoogle Scholar
  23. Geddes BA, Oresnik IJ (2012a) Genetic characterization of a complex locus necessary for the transport and catabolism of erythritol, adonitol and l-arabitol in Sinorhizobium meliloti. Microbiology 158:2180–2191CrossRefGoogle Scholar
  24. Geddes BA, Oresnik IJ (2012b) Inability to catabolize galactose leads to increased ability to compete for nodule occupancy in Sinorhizobium meliloti. J Bacteriol 194:5044–5053CrossRefGoogle Scholar
  25. Geddes BA, Oresnik IJ (2014) Physiology, genetics, and biochemistry of carbon metabolism in the alphaproteobacterium Sinorhizobium meliloti. Can J Microbiol 60:491–507CrossRefGoogle Scholar
  26. Geddes BA, Oresnik IJ (2016) The mechanism of symbiotic nitrogen fixation. In: Hurst CJ (ed) The mechanistic benefits of microbial symbionts, 1st edn. Springer International Publishing, Cham, pp 69–97CrossRefGoogle Scholar
  27. Gonin S, Arnoux P, Pierru B, Lavergne J, Alonso B, Sabaty M, Pignol D (2007) Crystal structures of an extracytoplasmic solute receptor from a TRAP transporter in its open and closed forms reveal a helix-swapped dimer requiring a cation for α-keto acid binding. BMC Struct Biol 7:1–14CrossRefGoogle Scholar
  28. Hamilton RH, Fall MZ (1971) The loss of tumor-initiating ability in Agrobacterium tumefaciens by incubation at high temperature. Experientia 27:229–230CrossRefGoogle Scholar
  29. Hanahan D (1983) Studies on transformation of Eschericia coli with plasmids. J Mol Biol 166:557–580CrossRefGoogle Scholar
  30. House BL, Mortimer MW, Kahn ML (2004) New recombination methods for Sinorhizobium meliloti genetics. Appl Environ Microb 70:2806–2815CrossRefGoogle Scholar
  31. Jacob AI, Adham SAI, Capstick DS, Clark SRD, Spence T, Charles TC (2008) Mutational analysis of the Sinorhizobium meliloti short-chain dehydrogenase/reductase family reveals substantial contribution to symbiosis and catabolic diversity. Mol Plant Microbe Interact 21:979–987CrossRefGoogle Scholar
  32. Jones JDG, Gutterson N (1987) An efficient mobilizable cosmid vector, pRK7813, and its use in a rapid method for marker exchange in Pseudomonas fluorescens strain HV37a. Gene 61:299–306CrossRefGoogle Scholar
  33. Jones DL, Nguyen C, Finlay RD (2009) Carbon flow in the rhizosphere: carbon trading at the soil–root interface. Plant Soil 321:5–33CrossRefGoogle Scholar
  34. Lengeler J (1975) Mutations affecting transport of the hexitols d-mannitol, d-glucitol, and galactitol in Escherichia coli K-12: isolation and mapping. J Bacteriol 124:26–38Google Scholar
  35. Lengeler J (1977) Analysis of mutations affecting the dissimilation of galactitol (dulcitol) in Escherichia coli K12. Mol Gen Genet 152:83–91CrossRefGoogle Scholar
  36. Leyn SA, Gao F, Yang C, Rodionov DA (2012) N-Acetylgalactosamine utilization pathway and regulon in proteobacteria: genomic reconstruction and experimental characterization in Shewanella. J Biol Chem 287:28047–28056CrossRefGoogle Scholar
  37. MacLean AM, MacPherson G, Aneja P, Finan TM (2006) Characterization of the β-ketoadipate pathway in Sinorhizobium meliloti. Appl Environ Microb 72:5403–5413CrossRefGoogle Scholar
  38. MacLean AM, White CE, Fowler JE, Finan TM (2009) Identification of a hydroxyproline transport system in the legume endosymbiont Sinorhizobium meliloti. Mol Plant Microbe Interact 22:1116–1127CrossRefGoogle Scholar
  39. Mauchline TH, Fowler JE, East AK, Sartor AL, Zaheer R, Hosie AHF, Poole PS, Finan TM (2006) Mapping the Sinorhizobium meliloti 1021 solute-binding protein-dependent transportome. Proc Natl Acad Sci 103:17933–17938CrossRefGoogle Scholar
  40. Meade HM, Long RS, Ruvkun GB, Brown SE, Ausubel FM (1982) Physical and genetic characterization of symbiotic and auxotrophic mutants of Rhizobium meliloti induced by transposon Tn5 mutagenesis. J Bacteriol 149:114–122Google Scholar
  41. Miller MA, Pfeiffer W, Schwartz T (2010) Creating the CIPRES science gateway for inference of large phylogenetic trees. In: SC10 workshop on gateway computing environments (GCE10)Google Scholar
  42. Mortlock RP (ed) (1984) Microorganisms as model systems for studying evolution. Plenum Press, New YorkGoogle Scholar
  43. Nobelmann B, Lengeler JW (1995) Sequence of the gat operon for galactitol utilization from a wild-type strain EC3132 of Escherichia coli. BBA Gene Struct Expr 1262:69–72CrossRefGoogle Scholar
  44. Nobelmann B, Lengeler JW (1996) Molecular analysis of the gat genes from Escherichia coli and of their roles in galactitol transport and metabolism. J Bacteriol 178:6790–6795CrossRefGoogle Scholar
  45. Nolle N, Felsl A, Heermann R, Fuchs TM (2017) Genetic characterization of the galactitol utilization pathway of Salmonella enterica serovar Typhimurium. J Bacteriol 199:e00595–e00516CrossRefGoogle Scholar
  46. Oresnik IJ, Pacarynuk LA, O’Brien SAP, Yost CK, Hynes MF (1998) Plasmid-encoded catabolic genes in Rhizobium leguminosarum bv. trifolii: evidence for a plant-inducible rhamnose locus involved in competition for nodulation. Mol Plant Microbe Interact 11:1175–1185CrossRefGoogle Scholar
  47. Pickering BS, Oresnik IJ (2008) Formate-dependent autotrophic growth in Sinorhizobium meliloti. J Bacteriol 190:6409–6418CrossRefGoogle Scholar
  48. Platt R, Drescher C, Park SK, Phillips GJ (2000) Genetic system for reversible integration of DNA constructs and lacZ gene fusions into the Escherichia coli chromosome. Plasmid 43:12–23CrossRefGoogle Scholar
  49. Poysti NJ, Loewen EDM, Wang Z, Oresnik IJ (2007) Sinorhizobium meliloti pSymB carries genes necessary for arabinose transport and catabolism. Microbiology 153:727–736CrossRefGoogle Scholar
  50. Prentki P, Krisch HM (1984) In vitro insertional mutagenesis with a selectable DNA fragment. Gene 29:303–313CrossRefGoogle Scholar
  51. Prlić A, Bliven S, Rose PW, Bluhm WF, Bizon C, Godzik A, Bourne PE (2010) Pre-calculated protein structure alignments at the RCSB PDB website. Bioinformatics 26:2983–2985CrossRefGoogle Scholar
  52. Pundir S, Martin MJ, O’Donovan C (2017) UniProt protein knowledgebase. In: Wu CH, Arighi CN, Ross KE (eds) Protein bioinformatics: from protein modifications and networks to proteomics. Springer New York, New York, pp 41–55CrossRefGoogle Scholar
  53. Reizer J, Ramseier TM, Reizer A, Charbit A, Saier MH (1996) Novel phosphotransferase genes revealed by bacterial genome sequencing: a gene cluster encoding a putative N-acetylgalactosamine metabolic pathway in Escherichia coli. Microbiology 142:231–250CrossRefGoogle Scholar
  54. Rivers D, Oresnik IJ (2013) Carbohydrate kinase (RhaK)-dependent ABC transport of rhamnose in Rhizobium leguminosarum demonstrates genetic separation of kinase and transport activities. J Bacteriol 195:3424–3432CrossRefGoogle Scholar
  55. Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, Cold Spring HarborGoogle Scholar
  56. Sánchez R, Serra F, Tárraga J, Medina I, Carbonell J, Pulido L, de María A, Capella-Gutíerrez S, Huerta-Cepas J, Gabaldón T, Dopazo J, Dopazo H (2011) Phylemon 2.0: a suite of web-tools for molecular evolution, phylogenetics, phylogenomics and hypotheses testing. Nucleic Acids Res 39:W470–W474CrossRefGoogle Scholar
  57. Schroeder BK, House BL, Mortimer MW, Yurgel SN, Maloney SC, Ward KL, Kahn ML (2005) Development of a functional genomics platform for Sinorhizobium meliloti: construction of an ORFeome. Appl Environ Microbiol 71:5858–5864CrossRefGoogle Scholar
  58. Sievers F, Wilm A, Dineen D, Gibson TJ, Karplus K, Li W, Lopez R, McWilliam H, Remmert M, Söding J, Thompson JD, Higgins DG (2011) Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol Syst Biol 7:539. CrossRefGoogle Scholar
  59. Stamatakis A (2014) RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30:1312–1313CrossRefGoogle Scholar
  60. Stein MA, Schäfer A, Giffhorn F (1997) Cloning, nucleotide sequence, and overexpression of smoS, a component of a novel operon encoding an ABC transporter and polyol dehydrogenases of Rhodobacter sphaeroides Si4. J Bacteriol 179:6335–6340CrossRefGoogle Scholar
  61. Stoscheck CM (1990) Quantitation of protein. In: Deutscher MP (ed) Methods in enzymology. Academic Press, San Diego, pp 50–68Google Scholar
  62. Thomas GH, Southworth T, León-Kempis MR, Leech A, Kelly DJ (2006) Novel ligands for the extracellular solute receptors of two bacterial TRAP transporters. Microbiology 152:187–198CrossRefGoogle Scholar
  63. Triplett EW, Sadowsky MJ (1992) Genetics of competition for nodulation of legumes. Annu Rev Microbiol 46:399–422CrossRefGoogle Scholar
  64. Udvardi M, Poole PS (2013) Transport and metabolism in legume-rhizobia symbioses. Annu Rev Plant Biol 64:781–805CrossRefGoogle Scholar
  65. Vincent JM (1970) A manual for the practical study of root-nodule bacteria. Blackwell Scientific Publications, OxfordGoogle Scholar
  66. Vitousek PM, Hättenschwiler S, Olander L, Allison S (2002) Nitrogen and nature. AMBIO 31:97–101CrossRefGoogle Scholar
  67. Wichelecki DJ, Vetting MW, Chou L, Al-Obaidi N, Bouvier JT, Almo SC, Gerlt JA (2015) ATP-binding cassette (ABC) transport system solute-binding protein-guided identification of novel d-altritol and galactitol catabolic pathways in Agrobacterium tumefaciens C58. J Biol Chem 290:28963–28976CrossRefGoogle Scholar
  68. Williamson JD, Jennings DB, Guo W-W, Pharr DM, Ehrenshaft M (2002) Sugar alcohols, salt stress, and fungal resistance: polyols—multifunctional plant protection? J Am Soc Hortic Sci 127:467–473CrossRefGoogle Scholar
  69. Yost CK, Rath AM, Noel TC, Hynes MF (2006) Characterization of genes involved in erythritol catabolism in Rhizobium leguminosarum bv. viciae. Microbiology 152:2061–2074CrossRefGoogle Scholar
  70. Yuan Z-C, Zaheer R, Finan TM (2006a) Regulation and properties of PstSCAB, a high-affinity, high-velocity phosphate transport system of Sinorhizobium meliloti. J Bacteriol 188:1089–1102CrossRefGoogle Scholar
  71. Yuan Z-C, Zaheer R, Morton R, Finan TM (2006b) Genome prediction of PhoB regulated promoters in Sinorhizobium meliloti and twelve proteobacteria. Nucleic Acids Res 34:2686–2697CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • MacLean G. Kohlmeier
    • 1
  • Catherine E. White
    • 2
  • Jane E. Fowler
    • 2
  • Turlough M. Finan
    • 2
  • Ivan J. Oresnik
    • 1
    Email author
  1. 1.Department of MicrobiologyUniversity of ManitobaWinnipegCanada
  2. 2.Department of BiologyMcMaster UniversityHamiltonCanada

Personalised recommendations