Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Site-specific recombination systems in filamentous phages


Since the discovery of the integration mechanism of the filamentous phage CTXϕ of Vibrio cholerae, integrating filamentous phages have been discovered to be more abundant and diverse than previously recognized. However, the integration systems of filamentous phages have not been fully investigated. The present review provides a short overview on the different strategies employed by filamentous bacteriophages for integration into the host chromosome. This is the first review to describe the diversity of site-specific recombination in filamentous phages.

This is a preview of subscription content, log in to check access.

Fig. 1


  1. Addy HS, Askora A, Kawasaki T, Fujie M, Yamada T (2012) Loss of virulence of the phytopathogen Ralstonia solanacearum through infection by ϕRSM filamentous phages. Phytopathology 105(5). doi:1094/PHYTO-11-11-0319-R

  2. Armstrong J, Perham RN, Walker JE (1981) Domain structure of the bacteriophage fd adsorption protein. FEBS Lett 135:167–172

  3. Askora A, Kawasaki T, Usami S, Fujie M, Yamada T (2009) Host recognition and integration of filamentous phage ϕRSM in the phytopathogen, Ralstonia solanacearum. Virology 384:69–76

  4. Askora A, Kawasaki T, Fujie M, Yamada T (2011) Resolvase-like serine recombinase mediates integration/excision in the bacteriophage ϕRSM. J Biosci Bioeng 111:109–116

  5. Barre FX, Sherratt DJS (2002) Xer site-specific recombination: promoting chromosome segregation. In: Craig NL, Craigie R, Gellert M, Lambowitz A (eds) Mobile DNA II, vol 1. American Society of Microbiology, Washington, DC, pp 149–161

  6. Bibb LA, Hancox MI, Hatfull GF (2005) Integration and excision by the large serine recombinase ϕRv1 integrase. Mol Microbiol 55:1896–1910

  7. Bille E, Zahar JR, Perrin A, Morelle S, Kriz P, Jolley KA, Maiden MCJ, Dervin C, Nassif X, Tinsley CR (2005) A chromosomally integrated bacteriophage in invasive meningococci. J Exp Med 201:1905–1913

  8. Biswas T, Aihara H, Radman-Livaja M, Filman D, Landy A, Ellenberger T (2005) A structural basis for allosteric control of DNA recombination by lambda integrase. Nature 435:1059–1066

  9. Blakely G, May G, McCulloch R, Arciszewska LK, Burke M, Lovett ST, Sherratt DJ (1993) Two related recombinases are required for site-specific recombination at dif and cer in E. coli K12. Cell 75:351–361

  10. Campbell A (1962) Episomes. Adv Genet 11:101–145

  11. Campos J, Martinez E, Suzarte E, Rodriguez BL, Marrero K, Silva Y, Ledon T, del Sol R, Fando R (2003) VGJϕ, a novel filamentous phage of Vibrio cholerae, integrates into the same chromosomal site as CTXϕ. J Bacteriol 185:5685–5696

  12. Campos J, Martinez E, Izquierdo Y, Fando R (2010) VEJϕ, a novel filamentous phage of Vibrio cholerae able to transduce the cholera toxin genes. Microbiology 156:108–115

  13. Colloms SD, Sykora P, Szatmari G, Sherratt DJ (1990) Recombination at ColE1 cer requires the Escherichia coli xerC gene product, a member of the lambda integrase family of site-specific recombinases. J Bacteriol 172:6973–6980

  14. Das B, Bischerour J, Val ME, Barre FX (2010) Molecular keys of the tropism of integration of the cholera toxin phage. Proc Natl Acad Sci USA 107:4377–4382

  15. de Mello Varani A, Souza RC, Nakaya HI, de Lima WC, de Almeid P, Watabnabe-Kitajima E, Chen J, Civerelo E, Vasconceliss ATR, Van Sluys MA (2008) Origins of the Xylella fastidiosa prophage-like regions and their impact in genome differentiation. PLoS ONE 3(12):e4059

  16. Deng LW, Malik P, Perham PN (1999) Interaction of the globular domains of pIII protein of filamentous bacteriophage fd with the F-pilus of Escherichia coli. Virology 253:271–277

  17. Gabriel K, Schmid H, Schmidt U, Rausch H (1995) The actinophage RP3 DNA integrates site-specifically into the putative tRNA (Arg) (AGG) gene of Streptomyces rimosus. Nucleic Acid Res 23:58–63

  18. Grindley NDF, Whiteson KL, Rice PA (2006) Mechanisms of site-specific recombination. Annu Rev Biochem 75:567–605

  19. Hatfull GF, Grindley NDF (1988) Resolvases and DNA invertases: a family of enzymes active in site-specific recombination. In: Kucherlapati R, Smith S (eds) Genetic recombination. ASM Press, Washington, DC, pp 357–396

  20. Hill DF, Short J, Perharm NR, Petersen GB (1991) DNA sequence of the filamentous bacteriophage Pf1. J Mol Biol 218:349–364

  21. Huber KE, Waldor MK (2002) Filamentous phage integration requires the host recombinases XerC and XerD. Nature 417:656–659

  22. Jacobson A (1972) Role of F pili in the penetration of bacteriophage fl. J Virol 10:835–843

  23. Kawai M, Uchiyama I, Kobayashi I (2005) Genomic comparison in silico in Neisseria suggests integration of filamentous bacteriophages by their own transposase. DNA Res 12:389–401

  24. Kawasaki T, Nagata S, Fujiwara A, Satsuma H, Fujie M, Usami S, Yamada T (2007) Genomic characterization of the filamentous integrative bacteriophage ϕRSS1 and ϕRSM1, which infect Ralstonia solanacearum. J Bacteriol 189:5792–5802

  25. Kitts P, Richet E, Nash HA (1984) Lambda integrative recombination: supercoiling, synapsis, and strand exchange. Cold Spring Harb Symp Quant Biol 49:735–744

  26. Lesterlin C, Barre FX, Cornet F (2004) Genetic recombination and the cell cycle: what we have learned from chromosome dimers. Mol Microbiol 54:1151–1160

  27. Marvin DA (1998) Filamentous phage structure, infection and assembly. Curr Opin Struc Biol 8:150–158

  28. McLeod SM, Waldor MK (2004) Characterization of XerC- and XerD-dependent CTX phage integration in Vibrio cholerae. Mol Microbiol 54:935–947

  29. Model P, Russel M (1988) Filamentous bacteriophages. In: Calendar R (ed) The bacteriophages, vol 2. Plenum Press, New York, pp 375–456

  30. Mooij MJ, Drenkard E, Llamas MA, Vandenbroucke-Grauls CMJE, Savelkoul PHM, Ausubel FM, Bitter W (2007) Characterization of the integrated filamentous phage Pf5 and its involvement in small-colony formation. Microbiology 153:1790–1798

  31. Mumm JP, Landy A, Gelles J (2006) Viewing single lambda site-specific recombination events from start to finish. EMBO J 25:4586–4595

  32. Nash HA (1996) Site-specific recombination: integration, excision, resolution and inversion of defined DNA segments. In: Neidhardt FC, Curtiss R III, Ingraham JL, Lin ECC, Low KB, Magasanik B, Reznikoff WS, Riley M, Schaechter M, Umbarger HE (eds) Escherichia coli and Salmonella. ASM Press, Washington, DC, pp 2363–2376

  33. Nunes-Düby SE, Kwon HJ, Tirumalai RS, Ellenberger T, Landy A (1998) Similarities and differences among 105 members of the Int family of site-specific recombinases. Nucleic Acids Res 26:391–406

  34. Russel M, Model P (1989) Genetic analysis of the filamentous bacteriophage packaging signal and the proteins that interact with it. J Virol 63:3284–3295

  35. Sadowski PD (1993) Site-specific genetic recombination: hops, flips, and flops. FASEB J 7:760–767

  36. Segall AM, Craig NL (2005) New wrinkles and folds in site-specific recombination. Mol Cell 19:433–435

  37. Sherratt DJ, Arciszewska LK, Blakely G, Colloms S, Grant K, Leslie N, McCulloch R (1995) Site-specific recombination and circular chromosome segregation. Phil Trans R Soc Lond (B) 347:37–42

  38. Smith MC, Thorpe HM (2002) Diversity in the serine recombinases. Mol Microbiol 44:299–307

  39. Stark WM, Boocock MR, Sherrat DJ (1992) Catalysis by site-specific recombinases. Trends Genet 8:432–439

  40. Sun X, Mierke DF, Biswas T, Lee SY, Landy A, Radman-Livaja M (2006) Architecture of the 99 bp DNA-six-protein regulatory complex of the lambda att site. Mol Cell 24:569–580

  41. Val ME, Bouvier M, Campos J, Sherratt D, Cornet F, Mazel D, Barre FX (2005) The single-stranded genome of phage CTX is the form used for integration into the genome of Vibrio cholerae. Mol Cell 19:559–565

  42. Waldor MK, Mekalanos JJ (1996) Lysogenic conversion by a filamentous phage encoding cholera toxin. Science 272:1910–1914

  43. Warren D, Lee SY, Landy A (2005) Mutations in the amino-terminal domain of lambda-integrase have differential effects on integrative and excisive recombination. Mol Microbiol 55:1104–1112

  44. Webb JS, Lau M, Kjelleberg S (2004) Bacteriophage and phenotypic variation in Pseudomonas aeruginosa biofilm development. J Bacteriol 186:8066–8073

  45. Yamada T (2012) Bacteriophages of Ralstonia solanacearum: their diversity and utilization as biocontrol agents in agriculture. In: Kurtboke I (ed) Bacteriophages. InTech Open Access Publisher, Croatia, pp 113–139

Download references

Author information

Correspondence to Ahmed Askora.

Additional information

Communicated by A. Aguilera.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Askora, A., Abdel-Haliem, M.E.F. & Yamada, T. Site-specific recombination systems in filamentous phages. Mol Genet Genomics 287, 525–530 (2012).

Download citation


  • Site-specific recombination
  • Filamentous phages
  • Recombinase
  • XerC/XerD