Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

2′-Hydroxychalcones as an alternative treatment for trichomoniasis in association with metronidazole

Abstract

The treatment for trichomoniasis, based on 5′-nitroimidazol agents, has been presenting failures related to allergic reactions, side effects, and the emergence of resistant isolates. There are no alternative drugs approved for the treatment of these cases; thus, the search for new active molecules is necessary. In this scenario, chalcones have been extensively studied for their promising biological activities. Here, we presented the synthesis of three hydroxychalcones (3a, b, and c), in vitro and in silico analyses against Trichomonas vaginalis. The in vitro biological evaluation showed that hydroxychalcone 3c presented anti-T. vaginalis activity, with complete death in 12 h of incubation at minimum inhibitory concentration (MIC) of 100 μM. 3c showed a dose-dependent cytotoxicity against mammalian VERO cell line, but the association of 3c at 12.5 μM and metronidazole (MTZ) at 40 μM showed 95.31% activity against T. vaginalis trophozoites after 24 h of exposure and did not affect the VERO cell growth, appearing to be a good alternative. In silico analysis by molecular docking showed that 3c could inhibit the activity of TvMGL (methionine gamma-lyase), TvLDH (lactate dehydrogenase), and TvPNP (purine nucleoside phosphorylase) affecting the T. vaginalis survival and also suggesting a different mechanism of action from MTZ. Therefore, these results propose that hydroxychalcones are promising anti-T. vaginalis agents and must be considered for further investigations regarding trichomoniasis treatment.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Abdellatif KRA, Elshemy HAH, Salama SA, Omar HA (2015) Synthesis, characterization and biological evaluation of novel 4′-fluoro-2′-hydroxy-chalcone derivatives as antioxidant, anti-inflammatory and analgesic agents. J Enzyme Inhib Med Chem 30:484–491. https://doi.org/10.3109/14756366.2014.949255

  2. Anthwal A, Rajesh UC, Rawat MSM, Kushwaha B, Maikhuri JP, Sharma VL, Gupta G, Rawat DS (2014) Novel metronidazole-chalcone conjugates with potential to counter drug resistance in Trichomonas vaginalis. Eur J Med Chem 79:89–94. https://doi.org/10.1016/j.ejmech.2014.03.076

  3. Badavath VN, Jadav SS, Pastorino B, de Lamballerie X, Jayaprakash BNS, (2016) Synthesis and antiviral activity of 2-aryl-4H-chromen-4-one derivatives against Chikungunya virus. Lett Drug Des Discov. https://doi.org/10.2174/1570180813666160711163349

  4. Bala V, Chhonker YS (2018) Recent developments in anti-Trichomonas research: an update review. Eur J Med Chem 143:232–243. https://doi.org/10.1016/j.ejmech.2017.11.029

  5. Borsari C, Santarem N, Torrado J, Olías AI, Corral MJ, Baptista C, Gul S, Wolf M, Kuzikov M, Ellinger B, Witt G, Gribbon P, Reinshagen J, Linciano P, Tait A, Costantino L, Freitas-Junior LH, Moraes CB, Bruno dos Santos P, Alcântara LM, Franco CH, Bertolacini CD, Fontana V, Tejera Nevado P, Clos J, Alunda JM, Cordeiro-da-Silva A, Ferrari S, Costi MP (2017) Methoxylated 2′-hydroxychalcones as antiparasitic hit compounds. Eur J Med Chem 126:1129–1135. https://doi.org/10.1016/j.ejmech.2016.12.017

  6. Bouchemal K, Bories C, Loiseau PM (2017) Crossm of Trichomonas vaginalis infections. Clin Microbiol Rev 30:811–825

  7. Da Silva CC, Pacheco BS, de Freitas SC, Berneira LM, dos Santos MAZ, Pizzuti L, de Pereira CMP (2018a) Hydroxychalcones: synthetic alternatives to enhance oxidative stability of biodiesel. In: Trindade M (ed) Increased biodiesel efficiency: alternatives for production, stabilization, characterization and use of coproduct. Springer International Publishing, Cham, pp 81–110. https://doi.org/10.1007/978-3-319-73552-8_4

  8. Da Silva CC, Pacheco BS, de Freitas SC, Berneira LM, dos Santos MAZ, Pizzuti L, de Pereira CMP (2018b) Hydroxychalcones: synthetic alternatives to enhance oxidative stability of biodiesel. Green Energy Technol:81–110. https://doi.org/10.1007/978-3-319-73552-8_4

  9. Daina A, Michielin O, Zoete V (2017) SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep 7:42717

  10. de Brum Vieira P, Giordani RB, Macedo AJ, Tasca T (2015) Natural and synthetic compound anti-Trichomonas vaginalis: an update review. Parasitol Res 114:1249–1261. https://doi.org/10.1007/s00436-015-4340-3

  11. Desideri N, Mastromarino P, Conti C (2003) Synthesis and evaluation of antirhinovirus activity of 3-hydroxy and 3-methoxy 2-styrylchromones. Antivir Chem Chemother 14:195–203. https://doi.org/10.1177/095632020301400404

  12. Diamond LS (1957) The establishment of various trichomonads of animals and man in axenic cultures. J Parasitol 43:488–490

  13. FDA-EUA (n.d) Drug approvals and databases. http://www.accessdata.fda.gov/scripts/cder/drugsatfda/index.cfm

  14. Forejtníková H, Lunerová K, Kubínová R, Jankovská D, Marek R, Kareš R, Suchý V, Vondráček J, Machala M (2005) Chemoprotective and toxic potentials of synthetic and natural chalcones and dihydrochalcones in vitro. Toxicology 208:81–93. https://doi.org/10.1016/j.tox.2004.11.011

  15. Frank LA, Contri RV, Beck RCR, Pohlmann AR, Guterres SS (2015) Improving drug biological effects by encapsulation into polymeric nanocapsules. Wiley Interdiscip Rev Nanomed Nanobiotechnol. https://doi.org/10.1002/wnan.1334

  16. Gajdács M (2019) The concept of an ideal antibiotic: implications for drug design. Molecules 24(5):892. https://doi.org/10.3390/molecules24050892

  17. Gomes MN, Muratov EN, Pereira M, Peixoto JC, Rosseto LP, Cravo PVL, Andrade CH, Neves BJ (2017) Chalcone derivatives: promising starting points for drug design. Molecules 22. https://doi.org/10.3390/molecules22081210

  18. Hanwell MD, Curtis DE, Lonie DC, Vandermeersch T, Zurek E, Hutchison GR (2012) Avogadro: an advanced semantic chemical editor, visualization, and analysis platform. J Cheminform 4:17. https://doi.org/10.1186/1758-2946-4-17

  19. Hübner DPG, de Brum Vieira P, Frasson AP, Menezes CB, Senger FR, Santos da Silva GN, Baggio Gnoatto SC, Tasca T (2016) Anti-Trichomonas vaginalis activity of betulinic acid derivatives. Biomed Pharmacother 84:476–484. https://doi.org/10.1016/j.biopha.2016.09.064

  20. Jhala YS, Dulawat SS, Verma BL (2006) Solvent-free improved syntheses of some substituted 1 , 3-diaryl-propenones and 3 , 5-diaryl-6-carbethoxycyclohexenones under microwave irradiation and their antibacterial activity. Indian J Chem 45:466–469

  21. Kamboj RC, Arora R, Sharma G, Kumar D, Sharma C, Joshi R, Aneja KR (2010) Eco-friendly synthesis and antimicrobial activity of chalcones. Der Pharma Chem. 2:157–170. https://doi.org/10.1186/2191-2858-2-20

  22. Kissinger P (2015) Trichomonas vaginalis: a review of epidemiologic, clinical and treatment issues. BMC Infect Dis 15:307. https://doi.org/10.1186/s12879-015-1055-0

  23. Lee YT, Fong TH, Chen HM, Chang CY, Wang YH, Chern CY, Chen YH (2014) Toxicity assessments of chalcone and some synthetic chalcone analogues in a zebrafish model. Molecules 19:641–650. https://doi.org/10.3390/molecules19010641

  24. Leitsch D (2016) Recent advances in the Trichomonas vaginalis field. F1000Res 5:1–7. https://doi.org/10.12688/f1000research.7594.1

  25. Ling F, Jiang C, Liu G, Li M, Wang G (2015) Anthelmintic efficacy of cinnamaldehyde and cinnamic acid from cortex cinnamon essential oil against Dactylogyrus intermedius. Parasitology 142:1744–1750. https://doi.org/10.1017/S0031182015001031

  26. Lipinski CA (2004) Lead-and drug-like compounds: the rule-of-five revolution. Drug Discovery Today: Technologies 1(4):337–341. https://doi.org/10.1016/j.ddtec.2004.11.007

  27. Lockwood BC, Coombs GH (1991) Purification and characterization of methionine y-lyase from. Biochem. J. 279:675–682. https://doi.org/10.1042/bj2790675

  28. Mahapatra DK, Bharti SK, Asati V (2015) Anti-cancer chalcones: structural and molecular target perspectives. Eur J Med Chem 98:69–114. https://doi.org/10.1016/j.ejmech.2015.05.004

  29. Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, Olson AJ (2009) AutoDock4 and AutoDockTools4 : automated docking with selective receptor flexibility. J Comput Chem 30:2785-2791 https://doi.org/10.1002/jcc.21256

  30. Palanco AC, Lacorte S, De J, Costa-Orlandi CB, Gullo FP, Strohmayer Lourencetti NM, Gomes PC, Ayusso GM, Dutra LA, Silva B, Da V, Regasini LO, Soares Mendes-Giannini MJ, Fusco-Almeida AM (2017) Activity of 3′-hydroxychalcone against Cryptococcus gattii and toxicity, and efficacy in alternative animal models. Future Microbiol 12:1123–1134. https://doi.org/10.2217/fmb-2017-0062

  31. Paulish-miller TE, Augostini P, Schuyler JA, Smith WL, Mordechai E, Adelson ME, Gygax SE, Secor WE, Hilbert W (2014) Trichomonas vaginalis metronidazole resistance is associated with single nucleotide polymorphisms in the Nitroreductase genes ntr4 Tv and ntr6 Tv. Antimicrob Agents Chemother 58:2938–2943. https://doi.org/10.1128/AAC.02370-13

  32. Petrin D, Delgaty K, Bhatt R, Garber G (1998) Clinical and microbiological aspects of Trichomonas vaginalis. Clin Microbiol Rev 11:300–317

  33. Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) UCSF Chimera - a visualization system for exploratory research and analysis. J Comput Chem 25:1605–1612. https://doi.org/10.1002/jcc.20084

  34. Rezk BM, Haenen GRMM, Van der Vijgh WJF, Bast A (2002) The antioxidant activity of phloretin: the disclosure of a new antioxidant pharmacophore in flavonoids. Biochem Biophys Res Commun 295:9–13. https://doi.org/10.1016/S0006-291X(02)00618-6

  35. Rinaldo-Matthis A, Wing C, Ghanem M, Deng H, Wu P, Gupta A, Tyler PC, Evans GB, Furneaux RH, Almo SC, Wang CC, Schramm VL (2007) Inhibition and structure of Trichomonas vaginalis purine nucleoside phosphorylase with picomolar transition state analogues. Biochemistry 46:659–668. https://doi.org/10.1021/bi061515r

  36. Sena-Lopes Â, das Neves RN, Bezerra FSB, de Oliveira Silva MT, Nobre PC, Perin G, Alves D, Savegnago L, Begnini KR, Seixas FK, Collares T, Borsuk S (2017) Antiparasitic activity of 1,3-dioxolanes containing tellurium in Trichomonas vaginalis. Biomed Pharmacother 89:284–287. https://doi.org/10.1016/j.biopha.2017.01.173

  37. Setzer MS, Byler KG, Ogungbe IV, Setzer WN (2017) Natural products as new treatment options for Trichomoniasis : a molecular docking investigation. https://doi.org/10.3390/scipharm85010005

  38. Singh G, Arora A, Mangat SS, Rani S, Kaur H, Goyal K, Sehgal R, Maurya IK, Tewari R, Choquesillo-Lazarte D, Sahoo S, Kaur N (2016) Design, synthesis and biological evaluation of chalconyl blended triazole allied organosilatranes as giardicidal and trichomonacidal agents. Eur J Med Chem 108:287–300. https://doi.org/10.1016/j.ejmech.2015.11.029

  39. Steindel PA, Chen EH, Wirth JD, Theobald DL (2016) Gradual neofunctionalization in the convergent evolution of trichomonad lactate and malate dehydrogenases. Protein Sci 25:1319–1331. https://doi.org/10.1002/pro.2904

  40. Tallarida RJ (2011) Quantitative methods for assessing drug synergism. Genes and Cancer 2:1003–1008. https://doi.org/10.1177/1947601912440575

  41. Trein MR, Rodrigues L, Rigo GV, Aparecida M, Garcia R (2019) Anti-Trichomonas vaginalis activity of chalcone and amino-analogues. Parasitol Res 118:607-615. https://doi.org/10.1007/s00436-018-6164-4

  42. Trott O, Olson AJ (2009) AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem. https://doi.org/10.1002/jcc.21334

  43. Wang F-W, Wang S-Q, Zhao B-X, Miao J-Y (2014) Discovery of 2′-hydroxychalcones as autophagy inducer in A549 lung cancer cells. Org Biomol Chem 12:3062–3070. https://doi.org/10.1039/C3OB42429D

  44. WHO (2012) Global incidence and prevalence of selected curable sexually transmitted infections-2008. World Heal Organ., pp 1–28

  45. Wong E (1968) The role of chalcones and flavanones in flavonoid biosynthesis. Phytochemistry 7:1751–1758

  46. Zhou B (2015) Diverse molecular targets for chalcones with varied bioactivities. Med Chem (Los Angeles) 5:388–404. https://doi.org/10.4172/2161-0444.1000291

Download references

Acknowledgments

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001.

Author information

Correspondence to Sibele Borsuk.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Section Editor: Kevin S.W. Tan

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

das Neves, R.N., Sena-Lopes, Â., Alves, M.S.D. et al. 2′-Hydroxychalcones as an alternative treatment for trichomoniasis in association with metronidazole. Parasitol Res 119, 725–736 (2020). https://doi.org/10.1007/s00436-019-06568-4

Download citation

Keywords

  • T. vaginalis
  • Synthesis
  • Chalcones
  • Molecular docking