Advertisement

Molecular characterization and immune protection of an AN1-like zinc finger protein of Eimeria tenella

  • Huanzhi Zhao
  • Qiping Zhao
  • Shunhai Zhu
  • Bing Huang
  • Ling Lv
  • Guiling Liu
  • Zhihang Li
  • Lu Wang
  • Hui Dong
  • Hongyu HanEmail author
Protozoology - Original Paper
  • 54 Downloads

Abstract

Coccidiosis is caused by multiple species of the apicomplexan protozoa Eimeria. Among them, Eimeria tenella is frequently considered to be the most pathogenic. Zinc finger proteins (ZnFPs) are a type of protein containing zinc finger domains. In the present study, a putative Eimeria tenella AN1-like ZnFP (E. tenella AN1-like zinc finger domain-containing protein, putative partial mRNA, EtAN1-ZnFP) was cloned and characterized, and its immune protective effects were evaluated. The 798-bp ORF sequence of EtAN1-ZnFP that encoded a protein of approximately 27.0 kDa was obtained. The recombinant EtAN1-ZnFP protein (rEtAN1-ZnFP) was expressed in Escherichia coli. Western blot analysis showed that the recombinant protein was recognized by the anti-GST monoclonal antibody and anti-sporozoite protein rabbit serum. qPCR analysis revealed that EtAN1-ZnFP was highly expressed in unsporulated oocysts and sporozoites. Immunostaining with an anti-rEtAN1-ZnFP antibody indicated that EtAN1-ZnFP was uniformly distributed in the cytoplasm of sporozoites, except for the refractive body; furthermore, this protein was evenly distributed in the cytoplasm of immature schizonts but seldom distributed in mature schizonts. The results of the in vitro invasion inhibition assay indicated that the antibodies against rEtAN1-ZnFP efficiently reduced the ability of E. tenella sporozoites to invade host cells. Animal challenge experiments demonstrated that the chickens immunized with rEtAN1-ZnFP protein significantly decreased mean lesion scores and fecal oocyst output compared with challenged control group. The results suggest that EtAN1-ZnFP can induce partial immune protection against infection with E. tenella and could be an effective candidate for the development of new vaccines.

Keywords

Eimeria tenella AN1-Like zinc finger protein Characterization Vaccine Chicken coccidiosis 

Notes

Acknowledgments

We would like to thank all organizations which funded this work and all the teachers who cooperated in technical assistance.

Funding information

This research was supported by the National Natural Science Foundation of China (Grant No. 31572266) and National Sharing Service Platform for Parasite Resource (No. TDRC-22) and Shanghai Minhang District talent development special funds.

Compliance with ethical standards

The animal experiments, which involved animal immune protection experiments, were performed in accordance with the Institutional Animal Care and Use Committee of Shanghai Veterinary Research Institute, the Chinese Academy of Agricultural Sciences (Permit Number:SHVRI-SZ-20180106-3), and were conducted in strict follow the recommendations outlined in the Guide for the Care and Use of Laboratory Animals.

References

  1. Belli SI, Smith NC, Ferguson DJ (2006) The coccidian oocyst: a tough nut to crack! Trends Parasitol 22(9):416–423.  https://doi.org/10.1016/j.pt.2006.07.004 CrossRefPubMedGoogle Scholar
  2. Blake DP, Pastor-Fernandez I, Nolan MJ, Tomley FM (2017) Recombinant anticoccidial vaccines - a cup half full? Infect Genet Evol 55:358–365.  https://doi.org/10.1016/j.meegid.2017.10.009 CrossRefGoogle Scholar
  3. Bozza S, Montagnoli C, Gaziano R, Rossi G, Nkwanyuo G, Bellocchio S, Romani L (2004) Dendritic cell-based vaccination against opportunistic fungi. Vaccine 22(7):857–864.  https://doi.org/10.1016/j.vaccine.2003.11.031 CrossRefPubMedGoogle Scholar
  4. Chang L, Chang HH, Chang JC, Lu HC, Wang TT, Hsu DW, Tzean Y, Cheng AP, Chiu YS, Yeh HH (2018) Plant A20/AN1 protein serves as the important hub to mediate antiviral immunity. PLoS Pathog 14(9):e1007288.  https://doi.org/10.1371/journal.ppat.1007288 CrossRefPubMedPubMedCentralGoogle Scholar
  5. Chapman HD (1998) Evaluation of the efficacy of anticoccidial drugs against Eimeria species in the fowl. International journal for parasitology 28(7):3CrossRefGoogle Scholar
  6. Chapman HD, Barta JR, Blake D, Gruber A, Jenkins M, Smith NC, Suo X, Tomley FM (2013) A selective review of advances in coccidiosis research. Adv Parasitol 83:93–171.  https://doi.org/10.1016/B978-0-12-407705-8.00002-1 CrossRefPubMedGoogle Scholar
  7. Chen Y, Inobe J, Marks R, Gonnella P, Kuchroo VK, Weiner HL (1995) Peripheral deletion of antigen-reactive T cells in oral tolerance. Nature 376(6536)CrossRefGoogle Scholar
  8. Choi KD, Lillehoj HS, Zalenga DS (1999) Changes in local IFN-gamma and TGF-beta4 mRNA expression and intraepithelial lymphocytes following Eimeria acervulina infection. Vet Immunol Immunopathol 71(3-4):263–275CrossRefGoogle Scholar
  9. Cornelissen JB, Swinkels WJ, Boersma WA, Rebel JM (2009) Host response to simultaneous infections with Eimeria acervulina, maxima and tenella: a cumulation of single responses. Vet Parasitol 162(1-2):58–66.  https://doi.org/10.1016/j.vetpar.2009.02.001 CrossRefPubMedGoogle Scholar
  10. del Cacho E, Gallego M, Lee SH, Lillehoj HS, Quilez J, Lillehoj EP, Sánchez-Acedo C (2012) Induction of protective immunity against Eimeria tenella, Eimeria maxima, and Eimeria acervulina infections using dendritic cell-derived exosomes. Infect Immun 80(5):1909–1916.  https://doi.org/10.1128/IAI.06413-11 CrossRefPubMedPubMedCentralGoogle Scholar
  11. Ding X, Lillehoj HS, Quiroz MA, Bevensee E, Lillehoj EP (2004) Protective immunity against Eimeria acervulina following in ovo immunization with a recombinant subunit vaccine and cytokine genes. Infect Immun 72(12):6939–6944.  https://doi.org/10.1128/iai.72.12.6939-6944.2004 CrossRefPubMedPubMedCentralGoogle Scholar
  12. Fukaura H, Kent SC, Pietrusewicz MJ, Khoury SJ, Weiner HL, Hafler DA (1996) Induction of circulating myelin basic protein and proteolipid protein-specific transforming growth factor-b1-secreting Th3 T cells by oral administration of myelin in multiple sclerosis patients. J Clin Invest 98(1)CrossRefGoogle Scholar
  13. Gharaibeh S, Mahmoud K (2013) Decay of maternal antibodies in broiler chickens. Poult Sci 92(9):2333–2336.  https://doi.org/10.3382/ps.2013-03249 CrossRefPubMedGoogle Scholar
  14. Ghosh S, Chatterji D (2017) Two zinc finger proteins from Mycobacterium smegmatis: DNA binding and activation of transcription. Genes Cells 22(8):699–714.  https://doi.org/10.1111/gtc.12507 CrossRefPubMedGoogle Scholar
  15. Gissot M, Hovasse A, Chaloin L, Schaeffer-Reiss C, Van Dorsselaer A, Tomavo S (2017) An evolutionary conserved zinc finger protein is involved in Toxoplasma gondii mRNA nuclear export. Cell Microbiol 19(2).  https://doi.org/10.1111/cmi.12644 CrossRefGoogle Scholar
  16. Han HY, Lin JJ, Zhao QP, Dong H, Jiang LL, Xu MQ, Zhu SH, Huang B (2010) Identification of differentially expressed genes in early stages of Eimeria tenella by suppression subtractive hybridization and cDNA microarray. J Parasitol 96(1):95–102.  https://doi.org/10.1645/GE-2221.1 CrossRefPubMedPubMedCentralGoogle Scholar
  17. Harpaz R, Edelman R, Wasserman SS, Levine MM, Davis JR, Sztein MB (1992) Serum cytokine profiles in experimental human malaria. Relationship to protection and disease course after challenge. J Clin Invest 90(2):515–523.  https://doi.org/10.1172/jci115889 CrossRefPubMedPubMedCentralGoogle Scholar
  18. Hong YH, Lillehoj HS, Lillehoj EP, Lee SH (2006) Changes in immune-related gene expression and intestinal lymphocyte subpopulations following Eimeria maxima infection of chickens. Vet Immunol Immunopathol 114(3-4):259–272.  https://doi.org/10.1016/j.vetimm.2006.08.006 CrossRefPubMedGoogle Scholar
  19. Huang BZQ, Wu XZ, Shi TW, Chen ZG (1993) Study on the identification and pathogenicity of the pure species of Eimeria tenella. Chinese Journal of Veterinary Parasitology 1(4):18–20Google Scholar
  20. Huang J, Zhang Z, Li M, Song X, Yan R, Xu L, Li X (2015) Immune protection of microneme 7 (EmMIC7) against Eimeria maxima challenge in chickens. Avian Pathol 44(5):392–400.  https://doi.org/10.1080/03079457.2015.1071780 CrossRefPubMedGoogle Scholar
  21. Iuchi S (2001) Three classes of C2H2 zinc finger proteins. Cell Mol Life Sci 58(4):625–635.  https://doi.org/10.1007/pl00000885 CrossRefPubMedGoogle Scholar
  22. Jahn D, Matros A, Bakulina AY, Tiedemann J, Schubert U, Giersberg M, Haehnel S, Zoufal K, Mock HP, Kipriyanov SM (2009) Model structure of the immunodominant surface antigen of Eimeria tenella identified as a target for sporozoite-neutralizing monoclonal antibody. Parasitol Res 105(3):655–668.  https://doi.org/10.1007/s00436-009-1437-6 CrossRefPubMedGoogle Scholar
  23. Jang SI, Lillehoj HS, Lee SH, Lee KW, Park MS, Bauchan GR, Lillehoj EP, Bertrand F, Dupuis L, Deville S (2010) Immunoenhancing effects of Montanide ISA oil-based adjuvants on recombinant coccidia antigen vaccination against Eimeria acervulina infection. Vet Parasitol 172(3-4):221–228.  https://doi.org/10.1016/j.vetpar.2010.04.042 CrossRefPubMedGoogle Scholar
  24. Jang SIKD, Lillehoj HS, Lee SH, Lee KW, Bertrand F, Dupuis L, Deville S, Ben Arous J, Lillehoj EP (2013) Evaluation of Montanide™ ISA 71 VG adjuvant during profilin vaccination against experimental coccidiosis. PLoS One 8(4).  https://doi.org/10.1371/journal.pone.0059786.t001
  25. Jiang L, Lin J, Han H, Zhao Q, Dong H, Zhu S, Huang B (2012) Identification and partial characterization of a serine protease inhibitor (serpin) of Eimeria tenella. Parasitol Res 110(2):865–874.  https://doi.org/10.1007/s00436-011-2568-0 CrossRefPubMedGoogle Scholar
  26. Jin YM, et al. (2018) Overexpression of a new zinc finger protein transcription factor OsCTZFP8 improves cold tolerance in rice.5480617.  https://doi.org/10.1155/2018/5480617 Google Scholar
  27. Kehrl JH, Roberts AB, Wakefield LM, Jakowlew S, Sporn MB, Fauci AS (1986) Transforming growth factor beta is an important immunomodulatory protein for human B lymphocytes. J Immunol 137(12):3855–3860PubMedGoogle Scholar
  28. Kundu K, Garg R, Kumar S, Mandal M, Tomley FM, Blake DP, Banerjee PS (2017) Humoral and cytokine response elicited during immunisation with recombinant immune mapped protein-1 (EtIMP-1) and oocysts of Eimeria tenella. Vet Parasitol 244:44–53.  https://doi.org/10.1016/j.vetpar.2017.07.025 CrossRefPubMedPubMedCentralGoogle Scholar
  29. Laurent F, Mancassola R, Lacroix S, Menezes R, Naciri M (2001) Analysis of chicken mucosal immune response to Eimeria tenella and Eimeria maxima infection by quantitative reverse transcription-PCR. Infect Immun 69(4):2527–2534.  https://doi.org/10.1128/IAI.69.4.2527-2534.2001 CrossRefPubMedPubMedCentralGoogle Scholar
  30. Lee KW, Lillehoj HS, Jang SI, Lee SH, Bautista DA, Donald Ritter G, Lillehoj EP, Siragusa GR (2013) Comparison of live Eimeria vaccination with in-feed salinomycin on growth and immune status in broiler chickens. Res Vet Sci 95(1):110–114.  https://doi.org/10.1016/j.rvsc.2013.02.005 CrossRefPubMedGoogle Scholar
  31. Lillehoj HS, Ding X, Quiroz MA, Bevensee E, Lillehoj EP (2005) Resistance to intestinal coccidiosis following DNA immunization with the cloned 3-1E Eimeria gene plus IL-2, IL-15, and IFN-gamma. Avian Dis 49(1):112–117.  https://doi.org/10.1637/7249-073004r CrossRefPubMedGoogle Scholar
  32. Lin RQ, Lillehoj HS, Lee SK, Oh S, Panebra A, Lillehoj EP (2017) Vaccination with Eimeria tenella elongation factor-1alpha recombinant protein induces protective immunity against E. tenella and E. maxima infections. Vet Parasitol 243:79–84.  https://doi.org/10.1016/j.vetpar.2017.06.003 CrossRefGoogle Scholar
  33. Liu L, Heermann DW (2015) The interaction of DNA with multi-Cys2His2 zinc finger proteins. J Phys Condens Matter 27(6):064107.  https://doi.org/10.1088/0953-8984/27/6/064107 CrossRefPubMedGoogle Scholar
  34. Liu T, Huang J, Li Y, Ehsan M, Wang S, Zhou Z, Song X, Yan R, Xu L, Li X (2018) Molecular characterisation and the protective immunity evaluation of Eimeria maxima surface antigen gene. Parasit Vectors 11(1):325.  https://doi.org/10.1186/s13071-018-2906-5 CrossRefPubMedPubMedCentralGoogle Scholar
  35. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-delta delta C(T)) method. Methods 25(4):402–408.  https://doi.org/10.1006/meth.2001.1262 CrossRefGoogle Scholar
  36. Lu H, Zhong G (1999) Interleukin-12 production is required for chlamydial antigen-pulsed dendritic cells to induce protection against live Chlamydia trachomatis infection. Infect Immun 67(4):1763–1769PubMedPubMedCentralGoogle Scholar
  37. Miller J, McLachlan AD, Klug A (1985) Repetitive zinc-binding domains in the protein transcription factor IIIA from Xenopus oocytes. EMBO J 4(6):1609–1614CrossRefGoogle Scholar
  38. Miska KB, Fetterer RH, Barfield RC (2004) Analysis of transcripts expressed by Eimeria tenella oocysts using subtractive hybridization methods. J Parasitol 90(6):1245–1252.  https://doi.org/10.1645/ge-309r CrossRefPubMedGoogle Scholar
  39. Morehouse NF, Baron RR (1970) Coccidiosis: evaluation of coccidiostats by mortality, weight gains, and fecal scores. Exp Parasitol 28(1):25–29CrossRefGoogle Scholar
  40. Muh F et al (2018) In vitro invasion inhibition assay using antibodies against Plasmodium knowlesi Duffy binding protein alpha and apical membrane antigen protein 1 in human erythrocyte-adapted P. knowlesi A1-H.1 strain. Malar J 17(1):272.  https://doi.org/10.1186/s12936-018-2420-4 CrossRefPubMedPubMedCentralGoogle Scholar
  41. Mukhopadhyay A, Vij S, Tyagi AK (2004) Overexpression of a zinc-finger protein gene from rice confers tolerance to cold, dehydration, and salt stress in transgenic tobacco. Proc Natl Acad Sci U S A 101(16):6309–6314.  https://doi.org/10.1073/pnas.0401572101 CrossRefPubMedPubMedCentralGoogle Scholar
  42. Orditura M, De Vita F, Roscigno A, Auriemma A, Infusino S, Catalano G (1998) Soluble interleukin-2 receptor and soluble CD8 antigen levels in serum from patients with solid tumors. Int J Mol Med 2(1):75–79PubMedGoogle Scholar
  43. Papageorgiou FT, Soteriadou KP (2002) Expression of a novel Leishmania gene encoding a histone H1-Like protein in Leishmania major modulates parasite infectivity in vitro. Infect Immun 70(12):6976–6986.  https://doi.org/10.1128/iai.70.12.6976-6986.2002 CrossRefPubMedPubMedCentralGoogle Scholar
  44. Pastor-Fernandez I et al (2018) Development of cross-protective Eimeria-vectored vaccines based on apical membrane antigens. Int J Parasitol 48(7):505–518.  https://doi.org/10.1016/j.ijpara.2018.01.003 CrossRefPubMedGoogle Scholar
  45. Peek LJ, Middaugh CR, Berkland C (2008) Nanotechnology in vaccine delivery. Adv Drug Deliv Rev 60(8):915–928.  https://doi.org/10.1016/j.addr.2007.05.017 CrossRefPubMedGoogle Scholar
  46. Plattner F, Yarovinsky F, Romero S, Didry D, Carlier MF, Sher A, Soldati-Favre D (2008) Toxoplasma profilin is essential for host cell invasion and TLR11-dependent induction of an interleukin-12 response. Cell Host Microbe 3(2):77–87.  https://doi.org/10.1016/j.chom.2008.01.001 CrossRefPubMedPubMedCentralGoogle Scholar
  47. Rafiqi SI, Garg R, KR K, Ram H, Singh M, Banerjee PS (2018) Immune response and protective efficacy of Eimeria tenella recombinant refractile body protein, EtSO7, in chickens. Vet Parasitol 258:108–113.  https://doi.org/10.1016/j.vetpar.2018.06.013 CrossRefPubMedPubMedCentralGoogle Scholar
  48. Rose ME, Mockett AP (1983) Antibodies to coccidia: detection by the enzyme-linked immunosorbent assay (ELISA). Parasite Immunol 5(5):479–489CrossRefGoogle Scholar
  49. Samso M, Daban JR, Hansen S, Jones GR (1995) Evidence for sodium dodecyl sulfate/protein complexes adopting a necklace structure. Eur J Biochem 232(3):818–824CrossRefGoogle Scholar
  50. Sharma S, Azmi S, Iqbal A, Nasirudullah N, Mushtaq I (2015) Pathomorphological alterations associated with chicken coccidiosis in Jammu division of India. J Parasit Dis 39(2):147–151.  https://doi.org/10.1007/s12639-013-0302-9 CrossRefPubMedGoogle Scholar
  51. Shirley MW, Smith AL, Blake DP (2007) Challenges in the successful control of the avian coccidia. Vaccine 25(30):5540–5547.  https://doi.org/10.1016/j.vaccine.2006.12.030 CrossRefPubMedGoogle Scholar
  52. Smith NC, Bucklar H, Muggli E, Hoop RK, Gottstein B, Eckert J (1993) Use of IgG- and IgM-specific ELISAs for the assessment of exposure status of chickens to Eimeria species. Vet Parasitol 51(1-2):13–25CrossRefGoogle Scholar
  53. Song H, Yan R, Xu L, Song X, Shah MA, Zhu H, Li X (2010) Efficacy of DNA vaccines carrying Eimeria acervulina lactate dehydrogenase antigen gene against coccidiosis. Exp Parasitol 126(2):224–231.  https://doi.org/10.1016/j.exppara.2010.05.015 CrossRefPubMedPubMedCentralGoogle Scholar
  54. Tomley F (1997) Techniques for isolation and characterization of apical organelles from Eimeria tenella sporozoites. Methods 13(2):171–176CrossRefGoogle Scholar
  55. Vij S, Tyagi AK (2008) A20/AN1 zinc-finger domain-containing proteins in plants and animals represent common elements in stress response. Funct Integr Genomics 8(3):301–307.  https://doi.org/10.1007/s10142-008-0078-7 CrossRefPubMedGoogle Scholar
  56. Wallach M (2010) Role of antibody in immunity and control of chicken coccidiosis. Trends Parasitol 26(8):382–387.  https://doi.org/10.1016/j.pt.2010.04.004 CrossRefPubMedGoogle Scholar
  57. Williams RB (1973) Effects of different infection rates on the oocyst production of Eimeria acervulina or Eimeria tenella in the chicken. Parasitology 67(3):279–288CrossRefGoogle Scholar
  58. Williams RB (2001) Quantification of the crowding effect during infections with the seven Eimeria species of the domesticated fowl: its importance for experimental designs and the production of oocyst stocks. Int J Parasitol 31(10):1056–1069CrossRefGoogle Scholar
  59. Willsie SK, Herndon BL, Miller L, Dew M (1996) Soluble versus cell-bound CD4, CD8 from bronchoalveolar lavage: correlation with pulmonary diagnoses in human immunodeficiency virus-infected individuals. J Leukoc Biol 59(6):813–816CrossRefGoogle Scholar
  60. Xie MQ, Gilbert JM, Fuller AL, McDougald LR (1990) A new method for purification of Eimeria tenella merozoites. Parasitol Res 76(7):566–569CrossRefGoogle Scholar
  61. Yin G, Qin M, Liu X, Suo J, Tang X, Tao G, Han Q, Suo X, Wu W (2013) An Eimeria vaccine candidate based on Eimeria tenella immune mapped protein 1 and the TLR-5 agonist Salmonella typhimurium FliC flagellin. Biochem Biophys Res Commun 440(3):437–442.  https://doi.org/10.1016/j.bbrc.2013.09.088 CrossRefPubMedGoogle Scholar
  62. Zajkowska J, Hermanowska-Szpakowicz T, Swierzbinska R (2001) Concentration of soluble CD4, CD8 and CD25 receptors in early localized and early disseminated Lyme borreliosis. Infection 29(2):71–74CrossRefGoogle Scholar
  63. Zhai Q, Huang B, Dong H, Zhao Q, Zhu S, Liang S, Li S, Yang S, Han H (2016) Molecular characterization and immune protection of a new conserved hypothetical protein of Eimeria tenella. PLoS One 11(6):e0157678.  https://doi.org/10.1371/journal.pone.0157678 CrossRefPubMedPubMedCentralGoogle Scholar
  64. Zhu H, Xu L, Yan R, Song X, Tang F, Wang S, Li X (2012) Identification and characterization of a cDNA clone-encoding antigen of Eimeria acervulina. Parasitology 139(13):1711–1719.  https://doi.org/10.1017/S0031182012001163 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Huanzhi Zhao
    • 1
  • Qiping Zhao
    • 1
  • Shunhai Zhu
    • 1
  • Bing Huang
    • 1
  • Ling Lv
    • 1
  • Guiling Liu
    • 1
    • 2
  • Zhihang Li
    • 1
    • 2
  • Lu Wang
    • 1
  • Hui Dong
    • 1
  • Hongyu Han
    • 1
    Email author
  1. 1.Key Laboratory of Animal Parasitology of Ministry of AgricultureShanghai Veterinary Research Institute, CAASShanghaiChina
  2. 2.College of Life and Environment SciencesShanghai Normal UniversityShanghaiChina

Personalised recommendations