Advertisement

Enhancement of the therapeutic efficacy of praziquantel in murine Schistosomiasis mansoni using silica nanocarrier

  • Gihan Mostafa Tawfeek
  • Mohammad Hassan Abdel Baki
  • Ayman Nabil IbrahimEmail author
  • Marmar Ahmad Hanafy Mostafa
  • Mohamed Mahmoud Fathy
  • Marwa Salah El Din Mohamed Diab
Treatment and Prophylaxis - Original Paper
  • 47 Downloads

Abstract

The main objective of this work is preparation of mesoporous silica nanoparticles loaded with praziquantel (PZQ-Si) in order to enhance the therapeutic efficacy of praziquantel (PZQ). Mice were experimentally infected with Schistosoma mansoni and treated 6 weeks post-infection with PZQ in different doses via either oral or intraperitoneal (IP) routes. PZQ in the same doses orally administered to S. mansoni-infected mice was used as a drug control, and infected and non-infected non-treated mice served as positive and negative controls, respectively. PZQ-Si exhibited good physicochemical attributes in terms of small uniform size (105 nm), spherical shape, and PZQ entrapment efficiency (83%). A maximum antischistosomal effect was achieved using orally administered PZQ-Si as reflected by total worm burden, tissue egg count, oogram pattern, and hepatic granuloma count and diameter. The biomarkers related to liver oxidative stress status and immunomodulatory effect (serum TNF-α and IL-10) were significantly improved. Data obtained implied that IP route was less efficacious for the delivery of PZQ-Si. Encapsulation of PZQ permits the reduction of the used therapeutic dose of PZQ. Hepatic DNA fragmentation, measured by comet assay, was significantly improved in infected mice treated with maximum dose of PZQ-Si as compared to positive or PZQ control groups. The results indicate that mesoporous silica NP is a promising safe nanocarrier for PZQ potentiating its antischistosomal, antioxidant, immunomodulatory, and anti-inflammatory action in animal model infected with S. mansoni. From a practical standpoint, PZQ-Si using a lower dose of PZQ could be suggested for effective PZQ antischistosomal mass chemotherapy.

Keywords

Silica nanoparticles Schistosoma mansoni Histopathology Oxidative stress 

Notes

Compliance with ethical standards

Conflicts of interest

We wish to confirm that there are no known conflicts of interest associated with this publication, and there has been no significant financial support for this work that could have influenced its outcome. We confirm that the manuscript has been read and approved by all named authors and that there are no other persons who satisfied the criteria for authorship but are not listed. We further confirm that the order of authors listed in the manuscript has been approved by all of us.

Ethical approval

The study was approved by the Research Ethics Committee, Faculty of Medicine, Ain Shams University. All the animal experiments were performed according to the national regulations for the Animal Ethics rules, Ain-Shams University, Cairo, Egypt.

References

  1. Abla N, Keiser J, Vargas M, Reimers N, Haas H, Spangenberg T (2017) Evaluation of the pharmacokinetic-pharmacodynamic relationship of praziquantel in the Schistosoma mansoni mouse model. PLoS Negl Trop Dis 11(9):e0005942PubMedPubMedCentralCrossRefGoogle Scholar
  2. Aboueldahab MM, Elhussieny EA (2016) Antiparasitic and physiological evaluation of Curcuma longa extract and/or PZQ on Schistosoma mansoni infected mice. International J. Adv Dent Res 4(6):1020–1039Google Scholar
  3. Aly IRB, Hendawy MA, Ali E, Hassan E, Nosseir MMF (2010) Immunological and parasitological parameters after treatment with dexamethasone in murine Schistosoma mansoni. Mem Inst. Oswaldo Cruz, Rio de Janeiro 105(6):729–735CrossRefGoogle Scholar
  4. Amara RO, Ramadan AA, El-Moslemany RM, Eissa MM, El-Azzouni MZ, El-Khordagui LK (2018) Praziquantel–lipid nanocapsules: an oral nanotherapeutic with potential Schistosoma mansoni tegumental targeting. Int J Nanomedicine 13:4493–4505PubMedPubMedCentralCrossRefGoogle Scholar
  5. Amolegbe SA, Hirano Y, Adebayo JO, Ademowo OG, Balogun EA, Obaleye JA, Hayami S (2018) Mesoporous silica nanocarriers encapsulated antimalarials with high therapeutic performance. Sci Rep 8(1):1–9CrossRefGoogle Scholar
  6. Barnes CA, Elsaesser A, Arkusz J, Smok A, Palus J, Les A, Howard CV (2008) Reproducible comet assay of amorphous silica nanoparticles detects no genotoxicity. Nano Lett 8(9):3069–3074PubMedCrossRefPubMedCentralGoogle Scholar
  7. Bartneck M, Warzecha KT, Tacke F (2014) Therapeutic targeting of liver inflammation and fibrosis by nanomedicine. Hepatobiliary Surg. Nutr. 3(6):364–376Google Scholar
  8. Barua S, Mitragotri S (2014) Challenges associated with penetration of nanoparticles across cell and tissue barriers: a review of current status and future prospects. Nano Today 9(2):223–243PubMedPubMedCentralCrossRefGoogle Scholar
  9. Beutler E, Duron O, Kelly BM (1963) Improved methods for the determination of glutathione. J Lab Clin Med 61:882–888PubMedPubMedCentralGoogle Scholar
  10. Bhattacharjee S (2016) DLS and zeta potential—what they are and what they are not? J Control Release 235:337–351PubMedCrossRefPubMedCentralGoogle Scholar
  11. Carvalho LV, Ruiz Rde C, Scaramuzzi K, Marengo EB, Matos JR, Tambourgi DV et al (2010) Immunological parameters related to the adjuvant effect of the ordered mesoporous silica SBA-15. Vaccine 28:7829e7836Google Scholar
  12. Cheever AW (1968) Conditions affecting the accuracy of potassium hydroxide digestion techniques for counting Schistosoma mansoni eggs in tissues. Bull WHO 39:328–331PubMedPubMedCentralGoogle Scholar
  13. Chen L, Liu J, Zhang Y, Zhang G, Kang Y, Chen A, Shao L (2018) The toxicity of silica nanoparticles to the immune system. Nanomedicine 13(15):1939–1962PubMedCrossRefPubMedCentralGoogle Scholar
  14. Choi H, Kim Y, Song M, Song M, Ryu J (2011) Genotoxicity of nano-silica in mammalian cell lines. Toxicol Environ Heal Sci 3(1):7–13CrossRefGoogle Scholar
  15. da Fonseca LB, Viçosa AL, Mattos ACA, Coelho PMZ, Araújo N, Zamith HPS, Volpato NM, Nele M, Pinto JCCS (2013) Development of a Brazilian nanoencapsulated drug for schistosomiasis treatment. Vigilância Sanitária em Debate 1(4):82–88Google Scholar
  16. de Souza ALR, Andreani T, de Oliveira RN, Kiill CP, dos Santos FK, Allegretti SM, Chaud MV, Souto EB, Silva AM, Gremião MPD (2014) In vitro evaluation of permeation, toxicity and effect of praziquantel-loaded solid lipid nanoparticles against Schistosoma mansoni as a strategy to improve efficacy of the schistosomiasis treatment. Int J Pharm 463:31–37PubMedCrossRefPubMedCentralGoogle Scholar
  17. Dkhil MA, Khalil MF, Diab MSM, Bauomy AA, Al-Quraishy S (2017) Effect of gold nanoparticles on mice splenomegaly induced by schistosomiasis mansoni. Saudi J Biol Sci 24:1418–1423PubMedCrossRefPubMedCentralGoogle Scholar
  18. Druray RA, Wallington EA (1980) Carletonʼs histological technique, 5th edn. Oxford University Press, Oxford, New York, pp 195–210Google Scholar
  19. Eissa MM, El-Moslemany RM, Ramadan AA, Amer EI, El-Azzouni MZ, El-Khordagui LK (2015) Miltefosine lipid nanocapsules for single dose oral treatment of schistosomiasis mansoni: a preclinical study. PLoS One 10(11):1–22CrossRefGoogle Scholar
  20. El-Beshbishi SN, Taman A, El-Malky M, Azab MS, El-Hawary AK (2013) First insight into the effect of single oral dose therapy with artemisinin–naphthoquine phosphate combination in a mouse model of Schistosoma mansoni infection. Int J Parasitol 43(7):521–530PubMedCrossRefPubMedCentralGoogle Scholar
  21. Elbialy NS, Fathy MM, Khalil WM (2014) Preparation and characterization of magnetic gold nanoparticles to be used as doxorubicin nanocarriers. Phys Med. 2014 Nov;30(7):843–8.  https://doi.org/10.1016/j.ejmp.2014.05.012 PubMedCrossRefPubMedCentralGoogle Scholar
  22. El-Feky GS, Mohamed WS, Nasr HE, El-Lakkany NM, Seifel-Din SH, Botros SS (2015) Praziquantel in a clay nanoformulation shows more bioavailability and higher efficacy against murine Schistosoma mansoni infection. Antimicrob Agents Chemother 59(6):3501–3508PubMedPubMedCentralCrossRefGoogle Scholar
  23. El-Lakkany NM, el-Din SH S, Sabra AA, Hammam OA (2011) Pharmacodynamics of mefloquine and praziquantel combination therapy in mice harbouring juvenile and adult Schistosoma mansoni. Mem. Inst. Oswaldo Cruz, Rio de Janeiro 106(7):814–822CrossRefGoogle Scholar
  24. Ellman GL (1959) Tissue sulfhydryl groups. Arch Biochem Biophys 82:70–77PubMedCrossRefPubMedCentralGoogle Scholar
  25. El-Moslemany RM, Eissa MM, Ramadan AA, El-Khordagui LK, El-Azzouni MZ (2016) Miltefosine lipid nanocapsules: intersection of drug repurposing and nanotechnology for single dose oral treatment of pre-patent schistosomiasis mansoni. Acta Trop 159:142–148PubMedCrossRefPubMedCentralGoogle Scholar
  26. El-Sayed NM, Fathy GM, Abdel-Rahman SAR, El-Shafei MAA (2016) Cytokine patterns in experimental schistosomiasis mansoni infected mice treated with silymarin. J Parasit Dis 40(3):922–929PubMedCrossRefPubMedCentralGoogle Scholar
  27. Fahmy SR, Rabia I, Mansour EM (2014) The potential role of mefloquine against Schistosoma mansoni infection by prohibition of hepatic oxidative stress in mice. J Basic Appl Zool 67(2):40–44CrossRefGoogle Scholar
  28. Fakahany AF, Younisa MS, El Hamshary AMS, Fouad MAH, Hassan MAE, Ali HSM (2014) Effect of mefloquine on worm burden and tegumental changes in experimental Schistosoma mansoni infection. J Microscopy Ultrastructure 2(1):7–11CrossRefGoogle Scholar
  29. Farrag EM, Mohamed AM, Kadry SM, Mahmoud AH, Farrag ARH, Fayed DB (2015) Impact of citharexylum quadrangular chloroform extract and micronutrient on praziquantel in Schistosoma mansoni infected mice. Am J Life Sci 3(2):62CrossRefGoogle Scholar
  30. Frezza TF, Gremião MP, Zanotti-Magalhães EM, Magalhães LA, De Souza AL, Allegretti SM (2013) Liposomal-praziquantel: efficacy against Schistosoma mansoni in a preclinical assay. Acta Trop 128:70–75PubMedCrossRefPubMedCentralGoogle Scholar
  31. Fu Q, Hargrove D, Lu X (2016) Improving paclitaxel pharmacokinetics by using tumor-specific mesoporous silica nanoparticles with intraperitoneal delivery. Nanomedicine 12(7):1951–1959PubMedPubMedCentralCrossRefGoogle Scholar
  32. Gan Q, Dai D, Yuan Y, Qian J (2012) Effect of size on the cellular endocytosis and controlled release of mesoporous silica nanoparticles for intracellular delivery. Biomed Microdevices 14:259–270PubMedCrossRefPubMedCentralGoogle Scholar
  33. Gouveia M, Brindley P, Gärtner F, Costa J, Vale N (2018) Drug repurposing for schistosomiasis: combinations of drugs or biomolecules. Pharmaceuticals 11(1):E15PubMedCrossRefPubMedCentralGoogle Scholar
  34. Greenberg RM (2013) New approaches for understanding mechanisms of drug resistance in schistosomes. Parasitology 140:1534–1546PubMedPubMedCentralCrossRefGoogle Scholar
  35. Hassan F, Abed G, Abdel-Samii M, Omar H (2016) Antischistosomal activity of ginger aqueous extract against experimental Schistosoma mansoni infection in mice. Biom J 2(2):20Google Scholar
  36. Heidegger S, Gössl D, Schmidt A, Niedermayer S, Argyo C, Endres S, Bein T, Bourquin C (2016) Immune response to functionalized mesoporous silica nanoparticles for targeted drug delivery. Nanoscale Jan 14 8(2):938–948.  https://doi.org/10.1039/c5nr06122a CrossRefPubMedPubMedCentralGoogle Scholar
  37. Honary S, Zahir F (2013) Effect of zeta potential on the properties of nano-drug delivery systems—a review (part 1). Trop J Pharm Res 12(2):255Google Scholar
  38. Jacobs W, Bogers J, Deelder A, Wery M, Van Marck E (1997) Adult Schistosoma mansoni worms positively modulate soluble egg antigen-induced inflammatory hepatic granuloma formation in vivo. Stereological analysis and immunophenotyping of extracellular matrix proteins, adhesion molecules, and chemokines. Am J Pathol 150:2033–2045PubMedPubMedCentralGoogle Scholar
  39. Jatsa HB, Kenfack CM, Simo DN, Feussom NG, Nkondo ET, Tchuem Tchuente LA, Kamtchouing P (2015) Schistosomicidal, hepatoprotective and antioxidant activities of the methanolic fraction from Clerodendrum umbellatum Poir leaves aqueous extract in Schistosoma mansoni infection in mice. BMC Complement Altern Med 15(1):1–9CrossRefGoogle Scholar
  40. Johnston CJ, Driscoll KE, Finkelstein JN (2000) Pulmonary chemokine and mutagenic responses in rats after subchronic inhalation of amorphous and crystalline silica. Toxicol Sci 56(2):405–413PubMedCrossRefPubMedCentralGoogle Scholar
  41. Kadry SM, Mohamed AM, Farrag EM, Dalia B, Fayed DB (2013) Influence of some micronutrients and Citharexylum quadrangular extract against liver fibrosis in Schistosoma mansoni infected mice. Afr J Pharm Pharmacol 7(38):2628–2638CrossRefGoogle Scholar
  42. Kolenyak-Santos F, Garnero C, de Oliveira RN, de Souza ALR, Chorilli M, Allegretti SM, Longhi MR, Chaud MV, Gremião MPD (2015) Nanostructured lipid carriers as a strategy to improve the in vitro schistosomiasis activity of praziquantel. J Nanosci Nanotechnol 15:761–772PubMedCrossRefPubMedCentralGoogle Scholar
  43. Liang YS, John BI, Boyd DA (1987) Laboratory cultivation of schistosome vector snails and maintenance of schistosome life cycles. Proceeding of the 1st Sino-American Symposium 1:34–48Google Scholar
  44. Liberman A, Mendeza N, Troglerb WC, Kummelb AC (2014) Synthesis and surface functionalization of silica nanoparticles for nanomedicine. Surf Sci Rep 69(2–3):132–158PubMedPubMedCentralCrossRefGoogle Scholar
  45. Lima TC, Lucarini R, Luz PP, EHDe F, Magalhães LG, Badoco FR, Andrade ML (2017) In vitro schistosomicidal activity of the lignan poly (lactic-co-glycolic acid) nanoparticles against Schistosoma mansoni. Pharm Biol 55(1):2270–2276PubMedPubMedCentralCrossRefGoogle Scholar
  46. Liu Y, Liu R, Li X, Song Z, Zhao X (2016) Development of docetaxel and alendronate-loaded nanoparticles : in vitro characterization in osteosarcoma cells. Trop J Pharm Res 15(7):1353–1360CrossRefGoogle Scholar
  47. Mainardes RM, Evangelista RC (2005) PLGA nanoparticles containing praziquantel: effect of formulation variables on size distribution. Int J Pharm 290(1–2):137–144PubMedCrossRefPubMedCentralGoogle Scholar
  48. Mamaeva V, Sahlgren C, Lindén M (2013) Mesoporous silica nanoparticles in medicine—recent advances. Adv Drug Deliv Rev 65(2013):689–702PubMedCrossRefPubMedCentralGoogle Scholar
  49. Mishra A, Vuddanda PR, Singh S (2014) Intestinal lymphatic delivery of praziquantel by solid lipid nanoparticles: formulation design, in vitro and in vivo studies. J. Nanotechnology, Article ID 351693, 12 pages.Google Scholar
  50. Montgomery, HAC. and Dymock, JF (1961). Analyst, 86:414Google Scholar
  51. Morry J, Ngamcherdtrakul W, Yantasee W (2017) Oxidative stress in cancer and fibrosis: Opportunity for therapeutic intervention with antioxidant compounds, enzymes, and nanoparticles. Redox Biol 11:240–253PubMedCrossRefPubMedCentralGoogle Scholar
  52. Mukhopadhyay P, Rajesh M, Horvath B, Batkai S, Park O, Tanchian G, Gao RY, Patel V, Wink DA, Liaudet L, Hasko G, Mechoulam R, Pacher P (2011) Cannabidiol protects against hepatic ischemia/reperfusion injury by attenuating inflammatory signaling and response, oxidative/nitrative stress, and cell death. Free Radic Biol Med 50:1368–1381PubMedPubMedCentralCrossRefGoogle Scholar
  53. Nhavene EPF, da Silva WM, Trivelato Junior RR, Gastelois PL, Venâncio T, Nascimento R, Sousa EMB (2018) Chitosan grafted into mesoporous silica nanoparticles as benznidazol carrier for Chagas diseases treatment. Microporous Mesoporous Mater 27:265–275CrossRefGoogle Scholar
  54. Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95(2):351–358PubMedCrossRefPubMedCentralGoogle Scholar
  55. Omar A, Elmesallamy GS, Eassa S (2005) Comparative study of the hepatotoxic, genotoxic and carcinogenic effects of praziquantel distocide & the natural myrrh extract Mirazid on adult male albino rats. J Egypt Soc Parasitol 35(1):313–329PubMedPubMedCentralGoogle Scholar
  56. Osmekhina E, Neubauer A, Klinzing K, Myllyharju J, Neubauer P (2010) Sandwich ELISA for quantitative detection of human collagen prolyl 4-hydroxylase. Microb Cell Factories 9:48CrossRefGoogle Scholar
  57. Pellegrino J, Faria J (1965) The oogram method for the screening of drugs in schistosomiasis mansoni. Am J Trop Med Hyg 14:363–369PubMedCrossRefPubMedCentralGoogle Scholar
  58. Radwan A, El-Lakkany NM, William S, El-Feky GS, Al-Shorbagy MY (2019) A novel praziquantel solid lipid nanoparticle formulation shows enhanced bioavailability and antischistosomal efficacy against murine S. mansoni infection. Parasites Vectors; 12:304.Google Scholar
  59. Reagan-Shaw S, Nihal M, Ahmad N (2008) Dose translation from animal to human studies revisited. FASEB J 22(3):659–61PubMedCrossRefPubMedCentralGoogle Scholar
  60. Ruttala HB, Ko YT (2014) Liposome encapsulated albumin-paclitaxel nanoparticle for enhanced antitumor efficacy. Pharm Res 32(3):1002–1016PubMedCrossRefPubMedCentralGoogle Scholar
  61. Sadat SMA, Jahan ST, Haddadi A (2016) Effects of size and surface charge of polymeric nanoparticles on in vitro and in vivo applications. J Biomater Nanobiotechnol 7:91–108CrossRefGoogle Scholar
  62. Shang L, Nienhaus K, Nienhaus GU (2014) Engineered nanoparticles interacting with cells : size matters. J Nanobiotechnology 12(1):1–11CrossRefGoogle Scholar
  63. Singh NP, McCoy MT, Tice RR, Schneider EL (1988) A simple technique for quantitation of low levels of DNA damage in individual cells. Exp Cell Res 175:184–191PubMedCrossRefPubMedCentralGoogle Scholar
  64. Smithers SR, Terry RJ (1965) Infection of laboratory hosts with cercariae of Schistosoma mansoni and the recovery of adult worms. Parasitol. 55:695–700CrossRefGoogle Scholar
  65. Sun X (2012) Mesoporous silica nanoparticles for applications in drug delivery and catalysis. Graduate Theses and Dissertations 12812Google Scholar
  66. Tan S, Wu Q, Wang J, Wang Y, Liu X, Sui K, Wu M (2011) Dynamic self-assembly synthesis and controlled release as drug vehicles of porous hollow silica nanoparticles. Microporous Mesoporous Mater 142(2-3):601–608CrossRefGoogle Scholar
  67. Tomiotto-Pellissier F, Miranda-Sapla MM, Machado LF, Bortoleti BTD, Sahd CS, Chagas AF, Assolini JP, Oliveira FJA, Pavanelli WR, Conchon-Costa I, Costa IN, Melanda FN (2017) Nanotechnology as a potential therapeutic alternative for schistosomiasis. Acta Trop 174:64–71PubMedCrossRefPubMedCentralGoogle Scholar
  68. Torabi N, Dobakhti F, Haniloo A (2017) Albendazole and praziquantel chitosan nanoparticles: preparation, characterization, and in vitro release study. Iran J Sci Technol Trans Sci 42(3):1269–1275CrossRefGoogle Scholar
  69. Vale N, Gouveia MJ, Rinaldi G, Brindley PJ, Gartner F, Correia da Costa JM (2017) Praziquantel for schistosomiasis: single-drug metabolism revisited, mode of action, and resistance. Antimicrob Agents Chemother 61:e02582–e02516PubMedPubMedCentralCrossRefGoogle Scholar
  70. Vallet-Regí M, Colilla M, Izquierdo-Barba I, Manzano M (2018) Mesoporous silica nanoparticles for drug delivery: Current insights. Molecules 23(1):E47CrossRefGoogle Scholar
  71. Wang YX, Xuan S, Port M, Idee JM (2013) Recent advances in superparamagnetic iron oxide nanoparticles for cellular imaging and targeted therapy research. Curr Pharm Des 19(37):6575–6593PubMedPubMedCentralCrossRefGoogle Scholar
  72. Wang M, Hu B, Ji H, Song Y, Liu J, Peng D, He L, Zhang Z (2017) Aptasensor Based on Hierarchical Core-Shell Nanocomposites of ZirconiumHexacyanoferrate Nanoparticles and Mesoporous mFe3O4@mC: Electrochemical Quantitation of Epithelial Tumor Marker Mucin-1. ACS Omega. 2017 Oct 31;2(10):6809–6818.  https://doi.org/10.1021/acsomega.7b01065.PubMedPubMedCentralCrossRefGoogle Scholar
  73. Xie S, Pan B, Wang M, Zhu L, Wang F, Dong Z, Zhou W (2010) Formulation, characterization and pharmacokinetics of praziquantel-loaded hydrogenated castor oil solid lipid nanoparticles. Nanomedicine 5(5):693–701PubMedCrossRefPubMedCentralGoogle Scholar
  74. Zhang Y, Wang J, Bai X, Jiang T, Zhang Q, Wang S (2012) Mesoporous silica nanoparticles for increasing the oral bioavailability and permeation of poorly water soluble drugs. Mol Pharm 9:505–513PubMedCrossRefPubMedCentralGoogle Scholar
  75. Zhao Y, Wang Y, Ran F, Cui Y, Liu C, Zhao Q, Gao Y, Wang D, Wang S (2017) A comparison between sphere and rod nanoparticles regarding their in vivo biological behavior and pharmacokinetics. Sci Rep 7:4131PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Gihan Mostafa Tawfeek
    • 1
  • Mohammad Hassan Abdel Baki
    • 1
  • Ayman Nabil Ibrahim
    • 1
    Email author
  • Marmar Ahmad Hanafy Mostafa
    • 1
  • Mohamed Mahmoud Fathy
    • 2
  • Marwa Salah El Din Mohamed Diab
    • 3
  1. 1.Faculty of MedicineAin-Shams UniversityCairoEgypt
  2. 2.Faculty of ScienceCairo UniversityCairoEgypt
  3. 3.Department of Molecular Drug EvaluationNational Organization for Drug Control Research (NODCAR)GizaEgypt

Personalised recommendations