Advertisement

Parasitology Research

, Volume 118, Issue 12, pp 3429–3441 | Cite as

Cryptosporidium parvum alters glucose transport mechanisms in infected enterocytes

  • Cora DellingEmail author
  • Arwid Daugschies
  • Berit Bangoura
  • Franziska Dengler
Immunology and Host-Parasite Interactions - Original Paper
  • 135 Downloads

Abstract

The parasite Cryptosporidium parvum Tyzzer 1912 destroys parts of the intestinal brush border membrane which is important for the uptake of nutrients like glucose. In this study, glucose transport mechanisms of the host cells (IPEC-J2 cells) infected by C. parvum were investigated. The mRNA expression levels of glucose transporters (GLUT) 1 and 2 and Na+-coupled glucose transporter (SGLT) 1 were compared in infected and uninfected cells over an infection time of 24–96 h by RT-qPCR. Furthermore, the protein expression of SGLT 1 and GLUT 2 was quantified in western blot studies. While the protein expression of SGLT 1 was not altered in infected cells, mRNA expression of SGLT 1 and GLUT 1 was significantly increased 24 h p. i. and decreased 96 h p. i. The mRNA expression of GLUT 2 was significantly decreased 24 h, 72 h, and 96 h p. i. and also correlated significantly with the infection dose at 72 h p. i. In contrast to that, the protein expression of GLUT 2 was significantly increased 48 h p. i., associated with a significantly higher intracellular glucose level in infected cells compared with control cells at that time point of infection. This points to an adaptation of the host cells’ glucose uptake taking place in the acute phase of the infection. A better understanding of these molecular mechanisms following a C. parvum infection may probably lead to an improvement of therapy strategies in the future.

Keywords

C. parvum infection Glucose transport IPEC-J2 cells Parasite-host interaction 

Notes

Acknowledgments

The authors want to thank S. Gawlowska and I. Urbansky for excellent technical assistance.

Funding information

This study was funded by a starting grant of the Faculty of Veterinary Medicine, University of Leipzig as well as the “Freundeskreis Tiermedizin der Veterinärmedizinischen Fakultät Leipzig e.V.” The Leica TCS SP8 laser scanning microscope as well as the graphic work station equipped with IMARIS 9.3 was provided by the BioImaging Core Facility, University of Leipzig.

Compliance with ethical standards

Conflict of interest statement

The authors declare that they have no conflict of interest.

Statement of informed consent

All applicable international, national, and/or institutional guidelines for the care and use of the animals were followed. All procedures concerning the animals, which were used for the passage of the parasite, were performed in accordance with the ethical standards of the institution (Regional Council of Saxony following German law: TierSchG, TieSchVersV; permit number: A 06/19).

References

  1. Argenzio RA, Liacos JA, Levy ML, Meuten DJ, Lecce JG, Powell DW (1990) Villous atrophy, crypt hyperplasia, cellular infiltration, and impaired glucose-Na absorption in enteric cryptosporidiosis of pigs. Gastroenterology 98:1129–1140CrossRefGoogle Scholar
  2. Berschneider HM (1989) Development of normal cultured small intestinal epithelial cell lines which transport Na and Cl (Abstract). Gasteroenterology 96:A41Google Scholar
  3. Boyer S, Sharp PA, Debnam ES, Baldwin SA, Srai SKS (1996) Streptozotocin diabetes and the expression of GLUT1 at the brush border and basolateral membranes of intestinal enterocytes. FEBS Lett 396:218–222CrossRefGoogle Scholar
  4. Bürzle M, Hediger MA (2012) Functional and physiological role of vitamin C transporters. Curr Top Membr 70:357–375.  https://doi.org/10.1016/B978-0-12-394316-3.00011-9 CrossRefPubMedGoogle Scholar
  5. Capet C, Kapel N, Huneau JF, Magne D, Laikuen R, Tricottet V, Benhamou Y, Tomé D, Gobert JG (1999) Cryptosporidium parvum infection in suckling rats: impairment of mucosal permeability and Na(+)-glucose cotransport. Exp Parasitol 91:119–125CrossRefGoogle Scholar
  6. Chen XM, O’Hara SP, Huang BQ, Splinter PL, Nelson JB, LaRusso NF (2005) Localized glucose and water influx facilitates Cryptosporidium parvum cellular invasion by means of modulation of host-cell membrane protrusion. Proc Natl Acad Sci U S A. 102:6338–6343CrossRefGoogle Scholar
  7. Chen L, Tuo B, Dong H (2016) Regulation of intestinal glucose absorption by ion channels and transporters. Nutrients 8:43.  https://doi.org/10.3390/nu8010043 CrossRefPubMedCentralGoogle Scholar
  8. Das S, Jayaratne R, Barrett KE (2018) The Role of Ion Transporters in the Pathophysiology of Infectious Diarrhea. Cellular and Molecular Gastroenterology and Hepatology 6 (1):33–45CrossRefGoogle Scholar
  9. Delling C, Lendner M, Müller U, Daugschies A (2017) Improvement of in vitro evaluation of chemical disinfectants for efficacy on Cryptosporidium parvum oocysts. Vet Parasitol 245:5–13.  https://doi.org/10.1016/j.vetpar.2017.07.018 CrossRefPubMedGoogle Scholar
  10. Dengler F, Rackwitz R, Pfannkuche H, Gäbel G (2017) Glucose transport across lagomorph jejunum epithelium is modulated by AMP-activated protein kinase under hypoxia. J Appl Physiol (1985) 1236:1487–1500.  https://doi.org/10.1152/japplphysiol.00436.2017 CrossRefGoogle Scholar
  11. Dengler F, Rackwitz R, Pfannkuche H, Gäbel G (2018) Coping with hypoxia: adaptation of glucose transport mechanisms across equine jejunum epithelium. JEVS 69:1–10Google Scholar
  12. Dominguez JH, Song B, Maianu L, Garvey WT, Qulali M (1994) Gene expression of epithelial glucose transporters: the role of diabetes mellitus. J Am Soc Nephrol. 5:29–36Google Scholar
  13. Dresely I, Daugschies A, Lendner M (2015) Establishment of a germ carrier assay to assess disinfectant efficacy against oocysts of coccidian parasites. Parasitol Res 114:273–281CrossRefGoogle Scholar
  14. Drinkall E, Wass MJ, Coffey TJ, Flynn RJ (2017) A rapid IL-17 response to Cryptosporidium parvum in the bovine intestine. Vet Immunol Immunopathol 191:1–4CrossRefGoogle Scholar
  15. Ferguson SH, Foster DM, Sherry B, Magness ST, Nielsen DM, Gookin JL (2019) Interferon-λ3 promotes epithelial defense and barrier function against Cryptosporidium parvum infection. Cell Mol Gastroenterol Hepatol 8:1–20.  https://doi.org/10.1016/j.jcmgh.2019.02.007 CrossRefPubMedPubMedCentralGoogle Scholar
  16. Foster DM, Stauffer SH, Stone MR, Gookin JL (2012) Proteasome inhibition of pathologic shedding of enterocytes to defend barrier function requires X-linked inhibitor of apoptosis protein and nuclear factor κB. Gastroenterology 143:133–144.  https://doi.org/10.1053/j.gastro.2012.03.030 CrossRefPubMedGoogle Scholar
  17. Göhring F, Möller-Holtkamp P, Daugschies A, Lendner M (2014) Untersuchungen zur Häufigkeit von Cryptosporidium parvum bei Durchfallkälbern und der Einfluss von Koinfektionen auf das Krankheitsgeschehen. Tierärztl Umschau 69:000–000Google Scholar
  18. Huang BQ, Chen XM, LaRusso NF (2004) Cryptosporidium parvum attachment to and internalization by human biliary epithelia in vitro: a morphologic study. J Parasitol 90:212–221CrossRefGoogle Scholar
  19. Kellett GL, Brot-Laroche E, Mace OJ, Leturque A (2008) Sugar absorption in the intestine: the role of GLUT2. Annu Rev Nutr 28:35–54.  https://doi.org/10.1146/annurev.nutr.28.061807.155518 CrossRefPubMedGoogle Scholar
  20. Kotloff KL, Nataro JP, Blackwelder WC, Nasrin D, Farag TH, Panchalingam S, Wu Y, Sow SO, Sur D, Breiman RF, Faruque AS, Zaidi AK, Saha D, Alonso PL, Tamboura B, Sanogo D, Onwuchekwa U, Manna B, Ramamurthy T, Kanungo S, Ochieng JB, Omore R, Oundo JO, Hossain A, Das SK, Ahmed S, Qureshi S, Quadri F, Adegbola RA, Antonio M, Hossain MJ, Akinsola A, Mandomando I, Nhampossa T, Acácio S, Biswas K, O’Reilly CE, Mintz ED, Berkeley LY, Muhsen K, Sommerfelt H, Robins-Browne RM, Levine MM (2013) Burden and aetiology of diarrhoeal disease in infants and young children in developing countries (the Global Enteric Multicenter Study, GEMS): a prospective, case-control study. Lancet 382:209–222CrossRefGoogle Scholar
  21. Krimi RB, Letteron P, Chedid P, Nazaret C, Ducroc R, Marie JC (2009) Resistin-like molecule-beta inhibits SGLT-1 activity and enhances GLUT2-dependent jejunal glucose transport. Diabetes 58:2032–2038.  https://doi.org/10.2337/db08-1786 CrossRefPubMedPubMedCentralGoogle Scholar
  22. Lehmann A, Hornby PJ (2016) Intestinal SGLT1 in metabolic health and disease. Am J Physiol Gastrointest Liver Physiol 310:887–898.  https://doi.org/10.1152/ajpgi.00068.2016 CrossRefGoogle Scholar
  23. Leitch GJ, He Q (2012) Cryptosporidiosis-an overview. J Biomed Res 25:1–16CrossRefGoogle Scholar
  24. Lendner M, Daugschies (2014) Cryptosporidium infections: molecular advances. Parasitology 141:1511–1532.  https://doi.org/10.1017/S0031182014000237 CrossRefPubMedGoogle Scholar
  25. Lendner M, Etzold M, Daugschies A (2011) Kryptosporidiose – ein Update. Berl Münch Tierärztl Wochenschr 124:10–21Google Scholar
  26. Liu J, Deng M, Lancto CA, Abrahamsen MS, Rutherford MS, Enomoto S (2009) Biphasic modulation of apoptotic pathways in Cryptosporidium parvum-infected human intestinal epithelial cells. Infect Immun 77:837–849.  https://doi.org/10.1128/IAI.00955-08 CrossRefPubMedGoogle Scholar
  27. Long W, Cheeseman CI (2015) Cell Health Cytoskeleton 7:167-83Google Scholar
  28. Metheni M, Lombès A, Bouillaud F, Batteux F, Langsley G (2015) HIF-1α induction, proliferation and glycolysis of Theileria-infected leucocytes. Cell Microbiol 17:467–472CrossRefGoogle Scholar
  29. Mirhashemi ME, Noubary F, Chapman-Bonofiglio S, Tzipori S, Huggins GS, Widmer G (2018) Transcriptome analysis of pig intestinal cell monolayers infected with Cryptosporidium parvum asexual stages. Parasit Vectors 11:176.  https://doi.org/10.1186/s13071-018-2754-3 CrossRefPubMedPubMedCentralGoogle Scholar
  30. Moore R, Tzipori S, Griffiths JK, Johnson K, De Montigny L, Lomakina I (1995) Temporal changes in permeability and structure of piglet ileum after site-specific infection by Cryptosporidium parvum. Gastroenterology 108:1030–1039CrossRefGoogle Scholar
  31. Mueckler M, Thorens B (2013) The SLC2 (GLUT) family of membrane transporters. Mol Aspects Med 34:121–138.  https://doi.org/10.1016/j.mam.2012.07.001 CrossRefPubMedPubMedCentralGoogle Scholar
  32. Najdrowski M, Joachim A, Daugschies A (2007) An improved in vitro infection model for viability testing of Cryptosporidium parvum oocysts. Vet Parasitol 150:150–154CrossRefGoogle Scholar
  33. Notari L, Riera DC, Sun R, Bohl JA, McLean LP, Madden KB, van Rooijen N, Vanuytsel T, Urban JF Jr, Zhao A, Shea-Donohue T (2014) Role of macrophages in the altered epithelial function during a type 2 immune response induced by enteric nematode infection. PLoS One 9:e84763.  https://doi.org/10.1371/journal.pone.0084763 eCollection 2014CrossRefPubMedPubMedCentralGoogle Scholar
  34. O’Hara SP, Gajdos GB, Trussoni CE, Splinter PL, LaRusso NF (2010) Cholangiocyte myosin IIB is required for localized aggregation of sodium glucose cotransporter 1 to sites of Cryptosporidium parvum cellular invasion and facilitates parasite internalization. Infect Immun 78:2927–2936.  https://doi.org/10.1128/IAI.00077-10 CrossRefPubMedPubMedCentralGoogle Scholar
  35. O’Hara SP, Chen X-M (2011) The cell biology of cryptosporidium infection. Microbes and Infection 13 (8-9):721–730CrossRefGoogle Scholar
  36. Pfaffl MW, Horgan GW, Dempfle L (2002) Relative expression software tool (REST) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Res 30(9):e36CrossRefGoogle Scholar
  37. Platts-Mills JA, Babji S, Bodhidatta L, Gratz J, Haque R, Havt A, McCormick BJ, McGrath M, Olortegui MP, Samie A, Shakoor S, Mondal D, Lima IF, Hariraju D, Rayamajhi BB, Qureshi S, Kabir F, Yori PP, Mufamadi B, Amour C, Carreon JD, Richard SA, Lang D, Bessong P, Mduma E, Ahmed T, Lima AA, Mason CJ, Zaidi AK, Bhutta ZA, Kosek M, Guerrant RL, Gottlieb M, Miller M, Kang G, Houpt ER (2015) MAL-ED Network Investigators. Pathogen – specific burdens of community diarrhoea in developing countries: a multisite birth cohort study (MAL-ED). Lancet Glob Health 3:e564–e575CrossRefGoogle Scholar
  38. Rider SD, Zhu G (2010) Cryptosporidium: Genomic and biochemical features. Experimental Parasitology 124 (1):2–9CrossRefGoogle Scholar
  39. Sasahara T, Maruyama H, Aoki M, Kikuno R, Sekiguchi T, Takahashi A, Satoh Y, Kitasato H, Takayama Y, Inoue M (2003) Apoptosis of intestinal crypt epithelium after Cryptosporidium parvum infection. J Infect Chemother. 9:278–281CrossRefGoogle Scholar
  40. Schierack P, Nordhoff M, Pollmann M, Weyrauch KD, Amasheh S, Lodemann U, Jores J, Tachu B, Kleta S, Blikslager A, Tedin K, Wieler LH (2006) Characterization of a porcine intestinal epithelial cell line for in vitro studies of microbial pathogenesis in swine. Histochem Cell Biol 125:293–305CrossRefGoogle Scholar
  41. Sekikawa S, Kawai Y, Fujiwara A, Takeda K, Tegoshi T, Uchikawa R, Yamada M, Arizono N (2003) Alterations in hexose, amino acid and peptide transporter expression in intestinal epithelial cells during Nippostrongylus brasiliensis infection in the rat. Int J Parasitol 33 (12):1419–1426CrossRefGoogle Scholar
  42. Semenza GL (2011) Regulation of metabolism by hypoxia-inducible factor 1. Cold Spring Harb Symp Quant Biol 76:347–353.  https://doi.org/10.1101/sqb.2011.76.010678 CrossRefPubMedGoogle Scholar
  43. Shepherd EJ, Helliwell PA, Mace OJ, Morgan EL, Patel N, Kellett GL (2004) Stress and glucocorticoid inhibit apical GLUT2-trafficking and intestinal glucose absorption in rat small intestine. J Physiol 560 (1):281–290CrossRefGoogle Scholar
  44. Spear W, Chan D, Coppens I, Johnson RS, Giaccia A, Blader IJ (2006) The host cell transcription factor hypoxia-inducible factor 1 is required for Toxoplasma gondii growth and survival at physiological oxygen levels. Cell Microbiol 8:339–352CrossRefGoogle Scholar
  45. Steinhoff-Wagner J, Zitnan R, Schönhusen U, Pfannkuche H, Hudakova M, Metges CC (2014) Diet effects on glucose absorption in the small intestine of neonatal calves: importance of intestinal mucosal growth, lactase activity, and glucose transporters. J Dairy Sci.  https://doi.org/10.3168/jds.2014-8391 CrossRefGoogle Scholar
  46. Tyzzer EE (1912) Cryptosporidium parvum (sp. nov.), a coccidium found in the small intestine of the common mouse. Arch Protistenkd 26:394–412Google Scholar
  47. Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3:RESEARCH0034CrossRefGoogle Scholar
  48. Wiley M, Sweeney KR, Chan DA, Brown KM, McMurtrey C, Howard EW, Giaccia AJ, Blader IJ (2010) Toxoplasma gondii activates hypoxia-inducible factor (HIF) by stabilizing the HIF-1α subunit via type I activing-like receptor kinase receptor signaling. J Biol Chem 285:26852–26860CrossRefGoogle Scholar
  49. Wright EM, Martín MG, Turk E (2003) Intestinal absorption in health and disease--sugars. Best Pract Res Clin Gastroenterol 17:943–956CrossRefGoogle Scholar
  50. Yang YL, Buck GA, Widmer G (2010) Cell sorting-assisted microarray profiling of host cell response to Cryptosporidium parvum infection. Infect Immun 78:1040–1048.  https://doi.org/10.1128/IAI.01009-09 CrossRefPubMedGoogle Scholar
  51. Yu Y, Zhang H, Guo F, Sun M, Zhu G (2014) A unique hexokinase in Cryptosporidium parvum, an apicomplexan pathogen lacking the Krebs cycle and oxidative phosphorylation. Protist 165(5):701–714.  https://doi.org/10.1016/j.protis.2014.08.002 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute of Parasitology, Faculty of Veterinary MedicineUniversity of LeipzigLeipzigGermany
  2. 2.Albrecht Daniel Thaer InstituteLeipzigGermany
  3. 3.Wyoming State Veterinary Laboratory, Department of Veterinary SciencesUniversity of WyomingLaramieUSA
  4. 4.Institute of Veterinary Physiology, Faculty of Veterinary MedicineUniversity of LeipzigLeipzigGermany

Personalised recommendations