Advertisement

Prevalence of double-stranded RNA virus in Trichomonas vaginalis isolated in Italy and association with the symbiont Mycoplasma hominis

  • Valentina Margarita
  • Alessandra Marongiu
  • Nicia Diaz
  • Daniele Dessì
  • Pier Luigi FioriEmail author
  • Paola Rappelli
Protozoology - Short Communication

Abstract

The flagellated protozoon Trichomonas vaginalis, responsible for trichomoniasis, can establish a symbiotic relationship with the bacterium Mycoplasma hominis and can harbor double-stranded RNA Trichomonasvirus (TVV). In this study, we investigated by real-time PCR the prevalence of the four TVVs and of M. hominis among 48 T. vaginalis strains isolated in Italy, and we evaluated a possible association with metronidazole resistance. Fifty percent of the analyzed trichomonad strains tested positive for at least one TVV T. vaginalis, with TVV2 being the most prevalent, followed by TVV1 and TVV3. Two T. vaginalis strains were infected by TVV4, detected in Europe for the first time. Interestingly, we found more than one TVV species in 75% of positive trichomonad strains. M. hominis was present in 81.25% of T. vaginalis isolates tested, and no statistically significant association was observed with the infection by any TVV. Metronidazole sensitivity of T. vaginalis isolates was evaluated in vitro, and no correlation was observed between minimal lethal concentration and the presence of TVVs. This is the first report on TVV infection of T. vaginalis in Italy. Even if no association of TVV positive isolates with the presence of the symbiont M. hominis or with metronidazole resistance was observed, further studies are needed to shed light on the effective role of infecting microorganisms on the pathophysiology of T. vaginalis.

Keywords

Trichomonas vaginalis Double-stranded RNA virus Mycoplasma hominis Metronidazole resistance Symbiosis Real-time PCR 

Notes

Acknowledgments

We sincerely thank Dr. Giuseppe Delogu for excellent technical assistance

Funding information

This work was supported by Ministero dell’Istruzione, dell’Università e della Ricerca, PRIN 2017 grant number 2017SFBFER_004.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Benchimol M, Chang TH, Alderete J (2002) Trichomonas vaginalis: observation of coexistence of multiple viruses in the same isolate. FEMS Microb Lett 215:197–201CrossRefGoogle Scholar
  2. Camporiondo MP, Farchi F, Ciccozzi M, Denaro A, Gallone D, Maracchioni F, Favalli C, Ciotti M (2016) Detection of HPV and co-infecting pathogens in healthy Italian women by multiplex real-time PCR. Infez Med 24:12–17PubMedGoogle Scholar
  3. da Luz BD, dos Santos O, Frasson AP, de Vargas RG, Macedo AJ, Tasca T (2015) High rates of double-stranded RNA viruses and Mycoplasma hominis in Trichomonas vaginalis clinical isolates in South Brazil. Infect Genet Evol 34:181–187.  https://doi.org/10.1016/j.meegid.2015.07.005 CrossRefGoogle Scholar
  4. Dessì D, Delogu G, Emonte E, Catania MR, Fiori PL, Rappelli P (2005) Long-term survival and intracellular replication of Mycoplasma hominis in Trichomonas vaginalis cells: potential role of the protozoon in transmitting bacterial infection. Infect Immun 73:1180–1186.  https://doi.org/10.1128/IAI.73.2.1180-1186.2005 CrossRefPubMedPubMedCentralGoogle Scholar
  5. Dessì D, Margarita V, Cocco AR, Marongiu A, Fiori PL, Rappelli P (2019) Trichomonas vaginalis and Mycoplasma hominis: new tales of two old friends. Parasitology:1–6.  https://doi.org/10.1017/S0031182018002135 CrossRefGoogle Scholar
  6. Diaz N, Dessì D, Dessole S, Fiori PL, Rappelli P (2010) Rapid detection of coinfections by Trichomonas vaginalis, Mycoplasma hominis, and Ureaplasma urealyticum by a new multiplex polymerase chain reaction. Diagn Microbiol Infect Dis 67:30–36CrossRefGoogle Scholar
  7. Fichorova RN, Lee Y, Yamamoto HS, Takagi Y, Hayes GR, Goodman RP, Chepa-Lotrea X, Buck OR, Murray R, Kula T, Beach DH, Singh BN, Nibert ML (2012) Endobiont viruses sensed by the human host - beyond conventional antiparasitic therapy. PLoS One 7:e48418.  https://doi.org/10.1371/journal.pone.0048418 CrossRefPubMedPubMedCentralGoogle Scholar
  8. Fichorova RN, Fraga J, Rappelli P, Fiori PL (2017) Trichomonas vaginalis infection in symbiosis with Trichomonasvirus and Mycoplasma. Res Microbiol 168:882–891.  https://doi.org/10.1016/j.resmic.2017.03.005 CrossRefPubMedGoogle Scholar
  9. Fraga J, Rojas L, Sariego I, Fernandez-Calienes A (2012) Genetic characterization of three Cuban Trichomonas vaginalis virus. Phylogeny of Totiviridae family. Infect Genet Evol 12:113–120.  https://doi.org/10.1016/j.meegid.2011.10.020 CrossRefPubMedGoogle Scholar
  10. Goodman RP, Freret TS, Kula T, Geller AM, Talkington MW, Tang-Fernandez V, Suciu O, Demidenko AA, Ghabrial SA, Beach DH, Singh BN, Fichorova RN, Nibert ML (2011) Clinical isolates of Trichomonas vaginalis concurrently infected by strains of up to four Trichomonasvirus species (Family Totiviridae). J Virol 85:4258–4270.  https://doi.org/10.1128/JVI.00220-11 CrossRefGoogle Scholar
  11. Graves KJ, Ghosh AP, Kissinger PJ, Muzny CA (2019a) Trichomonas vaginalis virus: a review of the literature. Int J STD AIDS.  https://doi.org/10.1177/0956462418809767 CrossRefGoogle Scholar
  12. Graves KJ, Ghosh AP, Schmidt N, Augostini P, Secor WE, Schwebke JR et al (2019b) Trichomonas vaginalis virus (TVV) among women with trichomoniasis and associations with demographics, clinical outcomes, and metronidazole resistance. Clin Infect Dis.  https://doi.org/10.1093/cid/ciz146
  13. Hampl V, Vanacova S, Kulsa J, Flegr J (2001) Concordance between genetic relatedness and phenotypic similarities of Trichomonas vaginalis strains. BMC Evol Biol 1:1–10.  https://doi.org/10.1186/1471-2148-1-11 CrossRefGoogle Scholar
  14. Hobbs M, Sena A, Swygard H, Schwebke J (2008) Trichomonas vaginalis and Trichomoniasis. In: Holmes KK, Sparling PF, Stamm W et al (eds) Sexually Transmitted Diseases, 4th edn, New York, pp 771–793Google Scholar
  15. Hyde JL, Sosnovtsev SV, Green KY, Wobus C, Virgin HW et al (2009) Mouse norovirus replication is associated with virus-induced vesicle clusters originating from membranes derived from the secretory pathway. J Virol 83:9709–9719CrossRefGoogle Scholar
  16. Jehee I, van der Veer C, Himschoot M, Hermans M, Bruisten S (2017) Direct detection of Trichomonas vaginalis virus in Trichomonas vaginalis positive clinical samples from the Netherlands. J Virol Methods 250:1–5.  https://doi.org/10.1016/j.jviromet.2017.09.007 CrossRefPubMedGoogle Scholar
  17. Khanaliha K, Masoumi-Asl H, Bokharaei-Salim F, Tabatabaei A, Naghdalipoor M (2017) Double-stranded RNA viral infection of Trichomonas vaginalis (TVV1) in Iranian isolates. Microb Pathog 109:56–60.  https://doi.org/10.1016/j.micpath.2017.04.032 CrossRefPubMedGoogle Scholar
  18. Küng E, Fürnkranz U, Walochnik J (2019) Chemotherapeutic options for the treatment of human trichomoniasis. Int J Antimicrob Agents 53:116–127CrossRefGoogle Scholar
  19. Lukacs N (1994) Detection of virus infection in plants and differentiation between coexisting viruses by monoclonal antibodies to double-stranded RNA. J Virol Methods 47:255–272CrossRefGoogle Scholar
  20. Margarita V, Rappelli P, Dessì D, Pintus G, Hirt RP, Fiori PL (2016) Symbiotic Association with Mycoplasma hominis can influence growth rate, ATP production, cytolysis and inflammatory response of Trichomonas vaginalis. Front Microbiol 20:953.  https://doi.org/10.3389/fmicb.2016.00953 CrossRefGoogle Scholar
  21. Masha SC, Cools P, Crucitti T, Sanders EJ, Vaneechoutte M (2017) Molecular typing of Trichomonas vaginalis isolates by actin gene sequence analysis and carriage of T. vaginalis viruses. Parasit Vectors 10:537.  https://doi.org/10.1186/s13071-017-2496-7 CrossRefPubMedPubMedCentralGoogle Scholar
  22. Rappelli P, Addis MF, Carta F, Fiori PL (1998) Mycoplasma hominis parasitism of Trichomonas vaginalis. Lancet 352:1286CrossRefGoogle Scholar
  23. Rivera WL, Justo CAC, Relucio-San Diego M, Loyola LM (2017) Detection and molecular characterization of double-stranded RNA viruses in Philippine Trichomonas vaginalis isolates. J Microbiol Immunol Infect 50:669–676.  https://doi.org/10.1016/j.jmii.2015.07.016 CrossRefPubMedGoogle Scholar
  24. Snipes LJ, Gamard PM, Narcisi EM, Beard CB, Lehmann T, Secor WE (2000) Molecular Epidemiology of metronidazole resistance in a population of Trichomonas vaginalis clinical isolates. J Clin Microbiol 38:3004–3009PubMedPubMedCentralGoogle Scholar
  25. Thi Trung Thu T, Margarita V, Cocco AR et al (2018) Trichomonas vaginalis transports virulent Mycoplasma hominis and transmits the infection to human cells after metronidazole treatment: a potential role in bacterial invasion of fetal membranes and amniotic fluid. J Pregnancy 2:5037181.  https://doi.org/10.1155/2018/5037181 CrossRefGoogle Scholar
  26. Twu O, Dessì D, Vu A, Mercer F, Stevens GC, de Miguel N et al (2014) Trichomonas vaginalis homolog of macrophage migration inhibitory factor induces prostate cell growth, invasiveness, and inflammatory responses. Proc Natl Acad Sci U S A 111:8179–8184.  https://doi.org/10.1073/pnas.1321884111 CrossRefPubMedPubMedCentralGoogle Scholar
  27. Wendel KA, Rompalo AM, Erbelding EJ, Chang T-H, Alderete JF (2002) Double-stranded RNA viral infection of Trichomonas vaginalis Infecting Patients Attending a Sexually Transmitted Diseases Clinic. J Infect Dis 186:558–561CrossRefGoogle Scholar
  28. Zangger H, Ronet C, Desponds C et al (2013) Detection of Leishmania RNA virus in Leishmania parasites. PLoS Negl Trop Dis 7:e2006.  https://doi.org/10.1371/journal.pntd.0002006 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Biomedical SciencesUniversity of SassariSassariItaly
  2. 2.Mediterranean Center for Disease Control (MCDC)Università degli Studi di SassariSassariItaly

Personalised recommendations