De novo transcriptome sequencing and differential gene expression analysis of two parasitic human Demodex species

  • Li Hu
  • Yae ZhaoEmail author
  • Dongling Niu
  • Xiaojuan Gong
  • Rui Yang
Arthropods and Medical Entomology - Original Paper


Demodex are among the tiniest organisms in Acari and are important mammalian parasites. However, differences in pathogenicity between two human parasites, Demodex folliculorum and Demodex brevis, remain unknown. Related genetic studies are limited by RNA extraction difficulties and molecular data deficiencies. In this study, RNA extraction, de novo sequencing, functional annotation, and differential gene expression analyses were performed to compare D. folliculorum and D. brevis. This yielded 67.09 and 65.10 million clean reads, respectively, with similar annotations. Bioinformatics analyses and manual alignments identified 237 coding sequences comprising 48 genes from 29 families, including five important functional classes. Of these, 30 genes from 20 families related to metabolism, motion, detoxification and stress response, and allergic reaction were differentially expressed between the two species. Cathepsin type 1, serine protease inhibitor, arginine kinase, triosephosphate isomerase, muscle-specific protein 20-2, myosin alkaline light chain, troponin C, tropomyosin, and heat shock protein 90 were highly expressed in D. folliculorum, whereas cathepsin type 2, aspartic protease, serine protease, myosin heavy chain type 2, and alpha tubulin type 1C were highly expressed in D. brevis. Verified coding sequences were nearly consistent with unigene clusters. Further, absolute quantification results demonstrated that differentially expressed genes followed the predicted expression trend. Therefore, the first RNA sequencing and functional annotation analysis of two Demodex species was successful. Differential expression of important functional genes is likely implicated in pathogenicity disparities between these two species. Our study provides molecular data and technical support for further studies on human Demodex pathogenicity and functional genes.


Human Demodex Pathogenicity differences de novo transcriptome sequencing Differentially expressed gene screening Expression quantity verification 


Funding information

This work was supported by National Natural Science Foundation of China (Nos. 81471972 and 81271856).

Compliance with ethical standards

The present study was approved by the Ethics Committee of Medical and Biological Research of Xi’an Jiaotong University Health Science Center (approval no. 2019-002). All subjects were sampled by the authors or associated project staff. Written informed consent was obtained from all patients.

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Supplementary material

436_2019_6461_MOESM1_ESM.docx (40 kb)
ESM 1 (DOCX 40 kb)
436_2019_6461_MOESM2_ESM.docx (36 kb)
ESM 2 (DOCX 36 kb)
436_2019_6461_MOESM3_ESM.docx (40 kb)
ESM 3 (DOCX 40 kb)
436_2019_6461_MOESM4_ESM.docx (57 kb)
ESM 4 (DOCX 57 kb)
436_2019_6461_MOESM5_ESM.docx (96 kb)
ESM 5 (DOCX 95 kb)
436_2019_6461_Fig8_ESM.png (291 kb)

(PNG 291 kb)

436_2019_6461_MOESM6_ESM.tif (868 kb)
High resolution image (TIF 867 kb)
436_2019_6461_Fig9_ESM.png (131 kb)

(PNG 130 kb)

436_2019_6461_MOESM7_ESM.tif (938 kb)
High resolution image (TIF 938 kb)
436_2019_6461_Fig10_ESM.png (130 kb)

(PNG 130 kb)

436_2019_6461_MOESM8_ESM.tif (623 kb)
High resolution image (TIF 622 kb)
436_2019_6461_Fig11_ESM.png (169 kb)

(PNG 169 kb)

436_2019_6461_MOESM9_ESM.tif (1 mb)
High resolution image (TIF 1047 kb)


  1. Ayres SJ (1930) Pityriasis folliculorum (Demodex). Arch Dermatol Syphilol 21:19–24. CrossRefGoogle Scholar
  2. Chan TF, Ji KM, Yim AK, Liu XY, Zhou JW, Li RQ, Yang KY, Li J, Li M, Law PT, Wu YL, Cai ZL, Qin H, Bao Y, Leung RK, Ng PK, Zou J, Zhong XJ, Ran PX, Zhong NS, Liu ZG, Tsui SK (2015) The draft genome, transcriptome, and microbiome of Dermatophagoides farinae reveal a broad spectrum of dust mite allergens. J Allergy Clin Immunol 135:539–548. CrossRefPubMedGoogle Scholar
  3. Cheng S, Zhang M, Chen H, Fan W, Huang Y (2019) The correlation between the microstructure of meibomian glands and ocular Demodex infestation: a retrospective case-control study in a Chinese population. Medicine (Baltimore) 98:e15595. CrossRefGoogle Scholar
  4. Conte YL, Alaux C, Martin JF, Harbo JR, Harris JW, Dantec C, Navajas M (2011) Social immunity in honeybees (Apis mellifera): transcriptome analysis of varroa-hygienic behaviour. Insect Mol Biol 20:399–408. CrossRefPubMedGoogle Scholar
  5. Cornall K, Wall R (2015) Ectoparasites of goats in the UK. Vet Parasitol 207:176–179. CrossRefPubMedGoogle Scholar
  6. Ferrer L, Ravera I, Silbermayr K (2014) Immunology and pathogenesis of canine demodicosis. Vet Dermatol 25:427–e65. CrossRefPubMedGoogle Scholar
  7. Forton F (2012) Papulopustular rosacea, skin immunity and Demodex: pityriasis folliculorum as a missing link. J Eur Acad Dermatol Venereol 26:19–28. CrossRefPubMedGoogle Scholar
  8. Gazi U, Gureser AS, Oztekin A, Karasartova D, Kosar-Acar N, Derici MK, Artuz F, Mumcuoglu KY, Taylan-Ozkan A (2019) Skin-homing T-cell responses associated with Demodex infestation and rosacea. Parasite Immunol 24:e12658. CrossRefGoogle Scholar
  9. Grbić M, Van Leeuwen T, Clark RM, Rombauts S, Rouzé P, Grbić V, Osborne EJ, Dermauw W, Ngoc PC, Ortego F, Hernández-Crespo P, Diaz I, Martinez M, Navajas M, Sucena É, Magalhães S, Nagy L, Pace RM, Djuranović S, Smagghe G, Iga M, Christiaens O, Veenstra JA, Ewer J, Villalobos RM, Hutter JL, Hudson SD, Velez M, Yi SV, Zeng J, Pires-daSilva A, Roch F, Cazaux M, Navarro M, Zhurov V, Acevedo G, Bjelica A, Fawcett JA, Bonnet E, Martens C, Baele G, Wissler L, Sanchez-Rodriguez A, Tirry L, Blais C, Demeestere K, Henz SR, Gregory TR, Mathieu J, Verdon L, Farinelli L, Schmutz J, Lindquist E, Feyereisen R, Van de Peer Y (2011) The genome of Tetranychus urticae reveals herbivorous pest adaptations. Nature 2479:487–492. CrossRefGoogle Scholar
  10. He ML, Xu J, He R, Shen NX, Gu XB, Peng XR, Yang GY (2016) Preliminary analysis of Psoroptes ovis transcriptome in different developmental stages. Parasite Vector 9(570):570. CrossRefGoogle Scholar
  11. Hoy MA, Yu FH, Meyer JM, Tarazona OA, Jeyaprakash A, Wu K (2013) Transcriptome sequencing and annotation of the predatory mite Metaseiulus occidentalis (Acari: Phytoseiidae): a cautionary tale about possible contamination by prey sequences. Exp Appl Acarol 59:283–296. CrossRefPubMedGoogle Scholar
  12. Hu L, Zhao YE, Cheng J, Yang Y, Li C, Lu ZH (2015) Constructing and detecting a cDNA library for mites. Parasitol Res 114:3893–3901. CrossRefPubMedGoogle Scholar
  13. Hu L, Zhao YE, Yang YJ, Niu DL, Wang RL, Cheng J, Yang F (2016) De novo RNA-Seq and functional annotation of Sarcoptes scabiei canis. Parasitol Res 115:2661–2670. CrossRefPubMedGoogle Scholar
  14. Hu L, Zhao YE, Niu DL, Yang R (2019) Establishing an RNA extraction method from a small number of Demodex mites for transcriptome sequencing. Exp Parasitol 200:67–72. CrossRefPubMedGoogle Scholar
  15. Kabululu ML, Ngowi HA, Kimera SI, Lekule FP, Kimbi EC, Johansen MV (2015) Risk factors for prevalence of pig parasitoses in Mbeya Region, Tanzania. Vet Parasitol 212:460–464. CrossRefPubMedGoogle Scholar
  16. Liu B, Jiang GF, Zhang YF, Li JL, Li XJ, Yue JS, Chen F, Liu H, Li H, Zhu S, Wang J, Ran C (2011) Analysis of transcriptome differences between resistant and susceptible strains of the citrus red mite Panonychus citri (Acari: Tetranychidae). PLoS One 6:e28516. CrossRefPubMedPubMedCentralGoogle Scholar
  17. Mahmood W, Viberg LT, Fischer K, Walton SF, Holt DC (2013) An aspartic protease of the scabies mite Sarcoptes scabiei is involved in the digestion of host skin and blood macromolecules. Plos Neglect Trop D 7(2525):e2525. CrossRefGoogle Scholar
  18. Niu DL, Wang RL, Zhao YE, Yang R, Hu L, Lei YY, Dan WC (2017) cDNA library construction of two human Demodex species. Acta Parasitol 62:354–376. CrossRefPubMedGoogle Scholar
  19. Olinda RG, Frade MTS, Soares GSL, de Aguiar GMN, Costa VMD, de Lucena RB, Dantes AFM (2013) Bovine demodicosis associated with squamous cell carcinoma of the vulva. Acta Sci Vet 41:29Google Scholar
  20. Schicht S, Qi WH, Poveda L, Strube C (2013) The predicted secretome and transmembranome of the poultry red mite Dermanyssus gallinae. Parasite Vector 6:259. CrossRefGoogle Scholar
  21. Sellars MJ, Vuocolo T, Leeton LA, Coman GJ, Degnan BM, Preston NP (2007) Real-time RT-PCR quantification of Kuruma shrimp transcripts: a comparison of relative and absolute quantification procedures. J Biotechnol 129:391–399. CrossRefPubMedGoogle Scholar
  22. Stuglik MT, Babik W, Prokop Z, Radwan J (2014) Alternative reproductive tactics and sex-biased gene expression: the study of the bulb mite transcriptome. Ecol Evol 4:623–632. CrossRefGoogle Scholar
  23. Wang DT, Guo QQ, Zhu HW, Liu Z, Wang GW, Li CY (2013) Comparative studies between relative and absolute PCR value using Sika Deer P21 gene as an example. Spec Wild Econ Anim Plant Res 4:10–13. CrossRefGoogle Scholar
  24. Zeytun E, Yazici M (2019) Incidence and density of Demodex folliculorum and Demodex brevis (Acari: Demodicidae) in patients with acne in the province of Erzincan, Turkey. Int J Acarol 45:108–112. CrossRefGoogle Scholar
  25. Zhao YE (2016) Human demodicosis: emerging dermatosis caused by Demodex. Chin J Parasitol Parasit Dis 34:456–462,472Google Scholar
  26. Zhao YE, Guo N, Li C, Lu ZH (2007) The dynamic observation of the morphologic structure and activity of human Demodex in different stages. Chin J Vector Bio Control 18:120–123. CrossRefGoogle Scholar
  27. Zhao YE, Guo N, Wu LP (2009) The effect of temperature on the viability of Demodex folliculorum and Demodex brevis. Parasitol Res 105:1623–1628. CrossRefPubMedGoogle Scholar
  28. Zhao YE, Wu LP, Peng Y, Cheng H (2010) Retrospective analysis of the association between Demodex infestation and rosacea. Arch Dermatol 146:896–902. CrossRefPubMedGoogle Scholar
  29. Zhao YE, Guo N, Xun M, Xu JR, Wang M, Wang DL (2011a) Sociodemographic characteristics and risk factor analysis of Demodex infestation (Acari: Demodicidae). J Zhejiang Univ-Sci B 12:998–1007. CrossRefPubMedPubMedCentralGoogle Scholar
  30. Zhao YE, Peng Y, Wang XL, Wu LP, Wang M, Yan HL, Xiao SX (2011b) Facial dermatosis associated with Demodex: a case–control study. J Zhejiang Univ-Sci B 12:1008–1015. CrossRefPubMedPubMedCentralGoogle Scholar
  31. Zhao YE, Guo N, Wu LP (2011c) Influence of temperature and medium on viability of Demodex folliculorum and Demodex brevis (Acari: Demodicidae). Exp Appl Acarol 54:421–425. CrossRefPubMedGoogle Scholar
  32. Zhao YE, Wu LP, Hu L, Xu JR (2012a) Association of blepharitis with Demodex: a meta-analysis. Ophthal Epidemiol 19:95–102. CrossRefGoogle Scholar
  33. Zhao YE, Hu L, Wu LP, Ma JX (2012b) A meta-analysis of association between acne vulgaris and Demodex infestation. J Zhejiang Univ-Sci B 13:192–202. CrossRefPubMedPubMedCentralGoogle Scholar
  34. Zhao YE, Hu L, Ma JX (2013) Molecular identification of four phenotypes of human Demodex mites (Acari: Demodicidae) based on mitochondrial 16S rDNA. Parasitol Res 112:3703–3711. CrossRefPubMedGoogle Scholar
  35. Zhao YE, Hu L, Yang YJ, Niu DL, Wang RL, Li WH, Ma SJ, Cheng J (2016) Improvement on the extraction method of RNA in mites and its quality test. Parasitol Res 115:851–858. CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Li Hu
    • 1
  • Yae Zhao
    • 1
    Email author
  • Dongling Niu
    • 1
  • Xiaojuan Gong
    • 1
  • Rui Yang
    • 1
  1. 1.Department of Pathogen Biology and Immunology, School of Basic Medical SciencesXi’an Jiaotong UniversityXi’anChina

Personalised recommendations