Advertisement

Phylogenetic relationships, expanded diversity and distribution of Crassiphiala spp. (Digenea, Diplostomidae), agents of black spot disease in fish

  • Tyler J. Achatz
  • Eric E. Pulis
  • Alan Fecchio
  • Isaac J. Schlosser
  • Vasyl V. TkachEmail author
Fish Parasitology - Original Paper

Abstract

Crassiphiala is a monotypic genus of diplostomid digeneans and is the type genus of the subfamily Crassiphialinae. The type species Crassiphiala bulboglossa parasitizes kingfishers in the Nearctic and has a Neascus-type metacercaria that encysts on fish intermediate hosts, often causing black spot disease. While recent molecular phylogenetic studies included some members of the Crassiphialinae, no DNA sequence data of Crassiphiala is currently available. Our molecular and morphological study of adult and larval crassiphialines from the Americas revealed the presence of at least three lineages of Crassiphiala from the Nearctic and two lineages from the Neotropics. This is the first record of Crassiphiala from the Neotropics. Herein, we provide the first molecular phylogeny of the Diplostomoidea that includes Crassiphiala. Our data revealed 0.2–2.4% divergence among 28S sequences and 11–19.8% among CO1 sequences of lineages of Crassiphiala. The results of our analyses did not support the monophyly of Crassiphialinae. Our results clearly demonstrated that the diversity of Crassiphiala has been underestimated.

Keywords

Diplostomidae Crassiphiala Molecular phylogeny Diversity Black spot disease 

Notes

Acknowledgments

We are grateful to Dr. João B. Pinho (Universidade Federal de Mato Grosso, Cuiabá, Mato Grosso, Brazil), Dr. Francisco Tiago de Melo (Federal University of Pará, Belém, Pará, Brazil), and Dr. Jeffrey A. Bell (University of North Dakota) for their invaluable help with obtaining permits and field collecting. We are grateful to Mary Jaros-Gourneau (University of North Dakota) for her assistance with processing of some of the samples.

Conflict of interest

The authors declare that they have no conflict of interests.

Funding information

Collecting and processing of the specimens were supported by the grant DEB-1120734 from the National Science Foundation and grant R15AI092622 from the National Institutes of Health, USA to VVT, and the Joe K. Neel Memorial Award from the University of North Dakota and Willis A. Reid, Jr. Student Research Grant from the American Society of Parasitologists to TJA. AF was supported by a postdoctoral fellowship (PNPD scholarship) from Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES).

Compliance with ethical standards

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. All procedures performed in studies involving animals were in accordance with the ethical standards (University of North Dakota IACUC protocol 0610-1). This article does not contain any studies with human participants performed by any of the authors.

References

  1. Achatz TJ, Pulis EE, Junker K, Binh TT, Snyder SD, Tkach VV (2019) Molecular phylogeny of the Cyathocotylidae (Digenea, Diplostomoidea) necessitates systematic changes and reveals a history of host and environment switches. Zool Scr 48:545–556CrossRefGoogle Scholar
  2. Blasco-Costa I, Locke SA (2017) Life history, systematics and evolution of the Diplostomoidea Poirier, 1886: progress, promises and challenges emerging from molecular studies. Adv Parasitol 98:167–225.  https://doi.org/10.1016/bs.apar.2017.05.001 CrossRefGoogle Scholar
  3. Boyd EM, Fry AE (1971) Metazoan parasites of the eastern belted kingfisher, Megaceryle alcyon alcyon. J Parasitol 57:150–156.  https://doi.org/10.2307/3277771 CrossRefGoogle Scholar
  4. Derycke S, Remerie T, Vierstraete A, Backeljau T, Vanfleteren J, Vincx M, Moens T (2005) Mitochondrial DNA variation and cryptic speciation within the free-living marine nematode Pellioditis marina. Mar Ecol Prog Ser 300:91–103.  https://doi.org/10.3354/MEPS300091 CrossRefGoogle Scholar
  5. Dubois G (1968) Synopsis des Strigeidae et des Diplostomatidae (Trematoda). Premiere Partie. Mem Soc Sci Nat Neuchâtel 10:1–727 [In French]Google Scholar
  6. Dubois G (1969) Les Strigeata (Trematoda) de la collection Elizabeth M. Boyd. Bull Soc Neuchl Sci Nat 92:5–12 [In French]Google Scholar
  7. Dubois G, Rausch R (1948) Seconde contribution a l’etude des strigeides (Trematoda) Nord-Américains. Bull Soc Neuchl Sci Nat 71:29–61 [In French]Google Scholar
  8. Hernández-Mena DI, García-Varela M, Pérez-Ponce de León G (2017) Filling the gaps in the classification of the Digenea Carus, 1863: systematic position of the Proterodiplostomidae Dubois, 1936 within the superfamily Diplostomoidea Poirier, 1886, inferred from nuclear and mitochondrial DNA sequences. Syst Parasitol 94:833–848.  https://doi.org/10.1007/s11230-017-9745-1 CrossRefGoogle Scholar
  9. Hoffman GL (1956) The life cycle of Crassiphiala bulboglossa (Trematoda: Strigeida): development of the metacercaria and cyst, and effect on the fish hosts. J Parasitol 42:435–444.  https://doi.org/10.2307/3274528 CrossRefGoogle Scholar
  10. Hunter GW III (1933) The strigeid trematode, Crassiphiala ambloplitis (Hughes, 1927). Parasitology 25:510–517.  https://doi.org/10.1017/S0031182000019752 CrossRefGoogle Scholar
  11. Kudlai O, Kostadinova A, Pulis EE, Tkach VV (2015) A new species of Drepanocephalus Dietz, 1909 (Digenea: Echinostomatidae) from the double-crested cormorant Phalacrocorax auritus (lesson) (Aves: Phalacrocoracidae) in North America. Syst Parasitol 90:221–230.  https://doi.org/10.1007/s11230-015-9550-7 CrossRefGoogle Scholar
  12. Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874.  https://doi.org/10.1093/molbev/msw054 CrossRefGoogle Scholar
  13. Locke SA, Van Dam AR, Caffara M, Pinto HA, López-Hernández D, Blanar CA (2018) Validity of the Diplostomoidea and Diplostomida (Digenea, Platyhelminthes) upheld in phylogenomic analysis. Int J Parasitol 48:1043–1059.  https://doi.org/10.1016/j.ijpara.2018.07.001 CrossRefGoogle Scholar
  14. Lockyer AE, Olson PD, Østergaard P, Rollinson D, Johnston DA, Attwood SW, Southgate VR et al (2003) The phylogeny of the Schistosomatidae based on three genes with emphasis on the interrelationships of Schistosoma Weinland, 1858. Parasitology 126:203–224.  https://doi.org/10.1017/S0031182002002792 CrossRefGoogle Scholar
  15. López-Jiménez A, Pérez-Ponce de León G, García-Varela M (2018) Molecular data reveal high diversity of Uvulifer (Trematoda: Diplostomidae) in middle America, with the description of a new species. J Helminthol 92:725–739.  https://doi.org/10.1017/S0022149X17000888 CrossRefGoogle Scholar
  16. Lutz HL, Tkach VV, Weckstein JD (2017) Methods for specimen-based studies of avian symbionts. In: Webster M (ed) The role of collections in ornithology: the extended specimen. Studies in avian biology. CRC Press, Boca Raton, pp 127–183.  https://doi.org/10.1201/9781315120454 Google Scholar
  17. McAllister CT, Tumlison R, Robison HW, Trauth SE (2013) Initial survey on black-spot disease (Digenea: Strigeoidea: Diplostomidae) in select Arkansas fishes. J Ark Acad Sci 67:200–203Google Scholar
  18. Muzzall PM, Cook V, Sweet DJ (2011) Helminths of belted kingfishers, Megaceryle alcyon Linnaeus, 1758, from a fish hatchery in Ohio, U.S.a. Comp Parasitol 78:367–372.  https://doi.org/10.1654/4492.1 CrossRefGoogle Scholar
  19. Niewiadomska K (2002) Family Diplostomidae Poirier, 1886. In: Gibson DI, Jones A, Bray RA (eds) Keys to the Trematoda, vol 1. CAB international and the Natural History Museum, Wallingford—London, pp 167–196.  https://doi.org/10.1017/S0031182002222830 CrossRefGoogle Scholar
  20. Preble NA, Harwood PD (1944) A heavy infection of strigeids in a kingfisher (Megaceryle alcyon alcyon). Trans Am Microsc Soc 63:340–341.  https://doi.org/10.2307/3223306 CrossRefGoogle Scholar
  21. Rambaut A (2016) Figtree (Version 1.4.3). Available at http://tree.bio.ed.ac.uk/software/figtree/. Accessed 14 Mar 2019
  22. Scott ME (1984) Helminth community in the belted kingfisher, Ceryle alcyon (L.) in southern Québec. Can J Zool 62:2670–2681.  https://doi.org/10.1139/z84-391 CrossRefGoogle Scholar
  23. Tkach VV, Littlewood DTJ, Olson PD, Kinsella JM, Swiderski Z (2003) Molecular phylogenetic analysis of the Microphalloidea Ward, 1901 (Trematoda: Digenea). Syst Parasitol 56:1–15.  https://doi.org/10.1023/A:1025546001611 CrossRefGoogle Scholar
  24. Tkach VV, Pawlowski J (1999) A new method of DNA extraction from the ethanol-fixed parasitic worms. Acta Parasitol 44:147–148Google Scholar
  25. Van Haitsma JP (1925) Crassiphiala bulboglossa nov. gen., nov. spec., a holostomatid trematode from the belted kingfisher, Ceryle alcyon Linn. Trans Am Microsc Soc 44:121–131.  https://doi.org/10.2307/3221460 CrossRefGoogle Scholar
  26. Van Steenkiste N, Locke SA, Castelin M, Marcogliese DJ, Abbott C (2015) New primers for DNA barcoding of digeneans and cestodes (Platyhelminthes). Mol Ecol Resour 15:945–952.  https://doi.org/10.1111/1755-0998.12358 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of BiologyUniversity of North Dakota, Starcher HallGrand ForksUSA
  2. 2.Department of Science and MathematicsNorthern State UniversityAberdeenUSA
  3. 3.Programa de Pós-Graduação em Ecologia e Conservação da BiodiversidadeUniversidade Federal de Mato GrossoCuiabáBrazil

Personalised recommendations