Advertisement

Plasmodium helical interspersed subtelomeric family—an enigmatic piece of the Plasmodium biology puzzle

  • Vikash Kumar
  • Ankita Behl
  • Rachana Sharma
  • Aanchal Sharma
  • Rachna HoraEmail author
Immunology and Host-Parasite Interactions - Review

Abstract

Plasmodium falciparum (Pf) refurbishes the infected erythrocytes by exporting a myriad of parasite proteins to the host cell. A novel exported protein family ‘Plasmodium Helical Interspersed Subtelomeric’ (PHIST) has gained attention for its significant roles in parasite biology. Here, we have collected and analysed available information on PHIST members to enhance understanding of their functions, varied localization and structure-function correlation. Functional diversity of PHIST proteins is highlighted by their involvement in PfEMP1 (Pf erythrocyte membrane protein 1) expression, trafficking and switching. This family also contributes to cytoadherence, gametocytogenesis, host cell modification and generation of extracellular vesicles. While the PHIST domain forms the hallmark of this family, existence and functions of additional domains (LyMP, TIGR01639) and the MEC motif underscores its diversity further. Since specific PHIST proteins seem to form pairs with PfEMP1 members, we have used in silico tools to predict such potential partners in Pf. This information and our analysis of structural data on a PHIST member provide important insights into their functioning. This review overall enables readers to view the PHIST family comprehensively, while highlighting key knowledge gaps in the field.

Keywords

Malaria Plasmodium falciparum PHIST PfEMP1 Cytoadherence MEC motif 

Notes

Supplementary material

436_2019_6420_MOESM1_ESM.docx (15 kb)
ESM 1 (DOCX 15 kb)

References

  1. Abdi A, Yu L, Goulding D, Rono MK, Bejon P, Choudhary J, Rayner J (2017) Proteomic analysis of extracellular vesicles from a Plasmodium falciparum Kenyan clinical isolate defines a core parasite secretome. Wellcome open research 2:50CrossRefGoogle Scholar
  2. Akinyi S, Hanssen E, Meyer EV, Jiang J, Korir CC, Singh B, Lapp S, Barnwell JW, Tilley L, Galinski MR (2012) A 95 kDa protein of Plasmodium vivax and P. cynomolgi visualized by three-dimensional tomography in the caveola–vesicle complexes (Schüffner's dots) of infected erythrocytes is a member of the PHIST family. Mol Microbiol 84:816–831CrossRefGoogle Scholar
  3. Bahl A, Brunk B, Crabtree J, Fraunholz MJ, Gajria B, Grant GR, Ginsburg H, Gupta D, Kissinger JC, Labo P, Li L (2003) PlasmoDB: the Plasmodium genome resource A database integrating experimental and computational data. Nucleic Acids Res 31:212–215CrossRefGoogle Scholar
  4. Baines AJ, Lu HC, Bennett PM (2014) The protein 4.1 family: hub proteins in animals for organizing membrane proteins. Biochimica et Biophysica Acta (BBA)-Biomembranes 1838:605–619CrossRefGoogle Scholar
  5. Claessens A, Adams Y, Ghumra A, Lindergard G, Buchan CC, Andisi C, Bull PC, Mok S, Gupta AP, Wang CW, Turner L (2012) A subset of group A-like var genes encodes the malaria parasite ligands for binding to human brain endothelial cells. Proc Natl Acad Sci 109:E1772–E1781CrossRefGoogle Scholar
  6. Clausen TM, Christoffersen S, Dahlbäck M, Langkilde AE, Jensen KE, Resende M, Agerbæk MØ, Andersen D, Berisha B, Ditlev SB, Pinto VV (2012) Structural and functional insight into how the Plasmodium falciparum VAR2CSA protein mediates binding to chondroitin sulfate a in placental malaria. J Biol Chem 287:23332–23345CrossRefGoogle Scholar
  7. Colovos C, Yeates TO (1993) Verification of protein structures: patterns of nonbonded atomic interactions. Protein Sci 2:1511–1519CrossRefGoogle Scholar
  8. Crabb BS, Cooke BM, Reeder JC, Waller RF, Caruana SR, Davern KM, Wickham ME, Brown GV, Coppel RL, Cowman AF (1997) Targeted gene disruption shows that knobs enable malaria-infected red cells to cytoadhere under physiological shear stress. Cell 89:287–296CrossRefGoogle Scholar
  9. Day KP, Hayward RE, Smith D, Culvenor JG (1998) CD36-dependent adhesion and knob expression of the transmission stages of Plasmodium falciparum is stage-specific. Mol Biochem Parasitol 93:167–177CrossRefGoogle Scholar
  10. Eksi S, Haile Y, Furuya T, Ma L, Su X, Williamson KC (2005) Identification of a subtelomeric gene family expressed during the asexual–sexual stage transition in Plasmodium falciparum. Mol Biochem Parasitol 143:90–99CrossRefGoogle Scholar
  11. Francis SE, Malkov VA, Oleinikov AV, Rossnagle E, Wendler JP, Mutabingwa TK, Fried M, Duffy PE (2007) Six genes are preferentially transcribed by the circulating and sequestered forms of Plasmodium falciparum parasites that infect pregnant women. Infect Immun 75:4838–4850CrossRefGoogle Scholar
  12. Glenister FK, Coppel RL, Cowman AF, Mohandas N, Cooke BM (2002) Contribution of parasite proteins to altered mechanical properties of malaria-infected red blood cells. Blood 99:1060–1063CrossRefGoogle Scholar
  13. Goel S, Muthusamy A, Miao J, Cui L, Salanti A, Winzeler EA, Gowda DC (2014) Targeted disruption of a ring-infected erythrocyte surface antigen (RESA)-like export protein gene in Plasmodium falciparum confers stable chondroitin 4-sulfate cytoadherence capacity. J Biol Chem 289:34408–34421CrossRefGoogle Scholar
  14. Guex N, Peitsch MC, Schwede T (2009) Automated comparative protein structure modeling with SWISS-MODEL and Swiss-PdbViewer: a historical perspective. Electrophoresis 30:S162–S173CrossRefGoogle Scholar
  15. Haldar K, Mohandas N (2007) Erythrocyte remodeling by malaria parasites. Curr Opin Hematol 14:203–209CrossRefGoogle Scholar
  16. Hiller NL, Bhattacharjee S, van Ooij C, Liolios K, Harrison T, Lopez-Estrano C, Haldar K (2004) A host-targeting signal in virulence proteins reveals a secretome in malarial infection. Science 306:1934–1937CrossRefGoogle Scholar
  17. Janes JH, Wang CP, Levin-Edens E, Vigan-Womas I, Guillotte M, Melcher M, Mercereau-Puijalon O, Smith JD (2011) Investigating the host binding signature on the Plasmodium falciparum PfEMP1 protein family. PLoS Pathog 7:e1002032CrossRefGoogle Scholar
  18. Kilili GK, LaCount DJ (2011) An erythrocyte cytoskeleton-binding motif in exported Plasmodium falciparum proteins. Eukaryot Cell 10:1439–1447CrossRefGoogle Scholar
  19. Kirk K, Saliba KJ (2007) Targeting nutrient uptake mechanisms in Plasmodium. Curr Drug Targets 8:75–88CrossRefGoogle Scholar
  20. Kuhn V, Diederich L, Keller TS IV, Kramer CM, Lückstädt W, Panknin C, Suvorava T, Isakson BE, Kelm M, Cortese-Krott MM (2017) Red blood cell function and dysfunction: redox regulation, nitric oxide metabolism, anemia. Antioxid Redox Signal 26:718–742CrossRefGoogle Scholar
  21. Kumar V, Kaur J, Singh AP, Singh V, Bisht A, Panda JJ, Mishra PC, Hora R (2018) PHISTc protein family members localize to different subcellular organelles and bind Plasmodium falciparum major virulence factor PfEMP-1. FEBS J 285:294–312CrossRefGoogle Scholar
  22. Lanzer M, Wickert H, Krohne G, Vincensini L, Breton CB (2006) Maurer’s clefts: a novel multi-functional organelle in the cytoplasm of Plasmodium falciparum-infected erythrocytes. Int J Parasitol 36:23–36CrossRefGoogle Scholar
  23. Liu Z, Miao J, Cui L (2011) Gametocytogenesis in malaria parasite: commitment, development and regulation. Future Microbiol 6:1351–1369CrossRefGoogle Scholar
  24. Lovell SC, Davis IW, Arendall WB III, De Bakker PI, Word JM, Prisant MG, Richardson JS, Richardson DC (2003) Structure validation by Cα geometry: ϕ, ψ and Cβ deviation. Proteins: Structure Function Bioinformatics 50:437–450CrossRefGoogle Scholar
  25. Lustigman S, Anders RF, Brown GV, Coppel RL (1990) The mature-parasite-infected erythrocyte surface antigen (MESA) of Plasmodium falciparum associates with the erythrocyte membrane skeletal protein, band 4.1. Mol Biochem Parasitol 38:261–270CrossRefGoogle Scholar
  26. MacPherson GG, Warrell MJ, White NJ, Looareesuwan SO, Warrell DA (1985) Human cerebral malaria. A quantitative ultrastructural analysis of parasitized erythrocyte sequestration. Am J Pathol 119:385Google Scholar
  27. Maier AG, Cooke BM, Cowman AF, Tilley L (2009) Malaria parasite proteins that remodel the host erythrocyte. Nat Rev Microbiol 7:341–354CrossRefGoogle Scholar
  28. Maier AG, Rug M, O'Neill MT, Brown M, Chakravorty S, Szestak T, Chesson J, Wu Y, Hughes K, Coppel RL, Newbold C (2008) Exported proteins required for virulence and rigidity of Plasmodium falciparum-infected human erythrocytes. Cell 134:48–61CrossRefGoogle Scholar
  29. Marti M, Good RT, Rug M, Knuepfer E, Cowman AF (2004) Targeting malaria virulence and remodeling proteins to the host erythrocyte. Science 306:1930–1933CrossRefGoogle Scholar
  30. Moreira CK, Naissant B, Coppi A, Bennett BL, Aime E, Franke-Fayard B, Janse CJ, Coppens I, Sinnis P, Templeton TJ (2016) The Plasmodium PHIST and RESA-like protein families of human and rodent malaria parasites. PLoS One 11:e0152510CrossRefGoogle Scholar
  31. Ndam NT, Bischoff E, Proux C, Lavstsen T, Salanti A, Guitard J, Nielsen MA, Coppée JY, Gaye A, Theander T, David PH (2008) Plasmodium falciparum transcriptome analysis reveals pregnancy malaria associated gene expression. PLoS One 3:e1855CrossRefGoogle Scholar
  32. Oberli A, Slater LM, Cutts E, Brand F, Mundwiler-Pachlatko E, Rusch S, Masik MF, Erat MC, Beck HP, Vakonakis I (2014) A Plasmodium falciparum PHIST protein binds the virulence factor PfEMP1 and comigrates to knobs on the host cell surface. FASEB J 28:4420–4433CrossRefGoogle Scholar
  33. Oberli A, Zurbrügg L, Rusch S, Brand F, Butler ME, Day JL, Cutts EE, Lavstsen T, Vakonakis I, Beck HP (2016) Plasmodium falciparum Plasmodium helical interspersed subtelomeric proteins contribute to cytoadherence and anchor P. falciparum erythrocyte membrane protein 1 to the host cell cytoskeleton. Cell Microbiol 18:1415–1428CrossRefGoogle Scholar
  34. Parish LA, Mai DW, Jones ML, Kitson EL, Rayner JC (2013) A member of the Plasmodium falciparum PHIST family binds to the erythrocyte cytoskeleton component band 4.1. Malar J 12:160CrossRefGoogle Scholar
  35. Petter M, Bonow I, Klinkert MQ (2008) Diverse expression patterns of subgroups of the rif multigene family during Plasmodium falciparum gametocytogenesis. PLoS One 3:e3779CrossRefGoogle Scholar
  36. Pongponratn E, Riganti M, Punpoowong B, Aikawa M (1991) Microvascular sequestration of parasitized erythrocytes in human falciparum malaria: a pathological study. Am J Trop Med Hyg 44:168–175CrossRefGoogle Scholar
  37. Prajapati SK, Singh OP (2013) Remodeling of human red cells infected with Plasmodium falciparum and the impact of PHIST proteins. Blood Cell Mol Dis 51:195–202CrossRefGoogle Scholar
  38. Proellocks NI, Herrmann S, Buckingham DW, Hanssen E, Hodges EK, Elsworth B, Morahan BJ, Coppel RL, Cooke BM (2014) A lysine-rich membrane-associated PHISTb protein involved in alteration of the cytoadhesive properties of Plasmodium falciparum-infected red blood cells. FASEB J 28:3103–3113CrossRefGoogle Scholar
  39. Regev-Rudzki N, Wilson DW, Carvalho TG, Sisquella X, Coleman BM, Rug M, Bursac D, Angrisano F, Gee M, Hill AF, Baum J (2013) Cell-cell communication between malaria-infected red blood cells via exosome-like vesicles. Cell 153:1120–1133CrossRefGoogle Scholar
  40. Rogers NJ, Hall BS, Obiero J, Targett GA, Sutherland CJ (2000) A model for sequestration of the transmission stages of Plasmodium falciparum: adhesion of gametocyte-infected erythrocytes to human bone marrow cells. Infect Immun 68:3455–3462CrossRefGoogle Scholar
  41. Rowe JA, Claessens A, Corrigan RA, Arman M (2009) Adhesion of Plasmodium falciparum-infected erythrocytes to human cells: molecular mechanisms and therapeutic implications. Expert Rev Mol Med 11:e16CrossRefGoogle Scholar
  42. Sanderson T, Rayner JC (2017) PhenoPlasm: a database of disruption phenotypes for malaria parasite genes. Wellcome Open Res 2:45CrossRefGoogle Scholar
  43. Sargeant TJ, Marti M, Caler E, Carlton JM, Simpson K, Speed TP, Cowman AF (2006) Lineage-specific expansion of proteins exported to erythrocytes in malaria parasites. Genome Biol 7:R12CrossRefGoogle Scholar
  44. Sharma L, Shukla G (2017) Placental malaria: a new insight into the pathophysiology. Frontiers in medicine 4:117CrossRefGoogle Scholar
  45. Sherman IW, Eda S, Winograd E (2003) Cytoadherence and sequestration in Plasmodium falciparum: defining the ties that bind. Microbes Infect 5:897–909CrossRefGoogle Scholar
  46. Silvestrini F, Lasonder E, Olivieri A, Camarda G, van Schaijk B, Sanchez M, Younis SY, Sauerwein R, Alano P (2010) Protein export marks the early phase of gametocytogenesis of the human malaria parasite Plasmodium falciparum. Mol Cell Proteomics 9:1437–1448CrossRefGoogle Scholar
  47. Sinnis P, Sim BK (1997) Cell invasion by the vertebrate stages of Plasmodium. Trends Microbiol 5:52–58CrossRefGoogle Scholar
  48. Smith JD, Craig AG, Kriek N, Hudson-Taylor D, Kyes S, Fagen T, Pinches R, Baruch DI, Newbold CI, Miller LH (2000a) Identification of a Plasmodium falciparum intercellular adhesion molecule-1 binding domain: a parasite adhesion trait implicated in cerebral malaria. Proc Natl Acad Sci 97:1766–1771CrossRefGoogle Scholar
  49. Smith JD, Rowe JA, Higgins MK, Lavstsen T (2013) Malaria’s deadly grip: cytoadhesion of P lasmodium falciparum-infected erythrocytes. Cell Microbiol 15:1976–1983CrossRefGoogle Scholar
  50. Smith JD, Subramanian G, Gamain B, Baruch DI, Miller LH (2000b) Classification of adhesive domains in the Plasmodium falciparum erythrocyte membrane protein 1 family. Mol Biochem Parasitol 110:293–310CrossRefGoogle Scholar
  51. Smith TG, Serghides L, Patel SN, Febbraio M, Silverstein RL, Kain KC (2003) CD36-mediated nonopsonic phagocytosis of erythrocytes infected with stage I and IIA gametocytes of Plasmodium falciparum. Infect Immun 71:393–400CrossRefGoogle Scholar
  52. Soni R, Sharma D, Bhatt TK (2016) Plasmodium falciparum secretome in erythrocyte and beyond. Front Microbiol 7:194CrossRefGoogle Scholar
  53. Staalsoe T, Megnekou R, Fievét N, Ricke CH, Zornig HD, Leke R, Taylor DW, Deloron P, Hviid L (2001) Acquisition and decay of antibodies to pregnancy-associated variant antigens on the surface of Plasmodium falciparum-infected erythrocytes that protect against placental parasitemia. J Infect Dis 184:618–626CrossRefGoogle Scholar
  54. Su XZ, Heatwole VM, Wertheimer SP, Guinet F, Herrfeldt JA, Peterson DS, Ravetch JA, Wellems TE (1995) The large diverse gene family var encodes proteins involved in cytoadherence and antigenic variation of Plasmodium falciparum-infected erythrocytes. Cell 82:89–100CrossRefGoogle Scholar
  55. Szklarczyk D, Franceschini A, Wyder S, Forslund K, Heller D, Huerta-Cepas J, Simonovic M, Roth A, Santos A, Tsafou KP, Kuhn M (2014) STRING v10: protein–protein interaction networks, integrated over the tree of life. Nucleic Acids Res 43:D447–D452CrossRefGoogle Scholar
  56. Tarr SJ, Moon RW, Hardege I, Osborne AR (2014) A conserved domain targets exported PHISTb family proteins to the periphery of Plasmodium infected erythrocytes. Mol Biochem Parasitol 196:29–40CrossRefGoogle Scholar
  57. Waller KL, Nunomura W, An X, Cooke BM, Mohandas N, Coppel RL (2003) Mature parasite-infected erythrocyte surface antigen (MESA) of Plasmodium falciparum binds to the 30-kDa domain of protein 4.1 in malaria-infected red blood cells. Blood 102:1911–1914CrossRefGoogle Scholar
  58. Warncke JD, Vakonakis I, Beck HP (2016) Plasmodium helical interspersed subtelomeric (PHIST) proteins, at the center of host cell remodeling. Microbiol Mol Biol Rev 80:905–927CrossRefGoogle Scholar
  59. World Health Organization (2016) World malaria report 2015. World Health Organization, GenevaGoogle Scholar
  60. Zhang M, Wang C, Otto TD, Oberstaller J, Liao X, Adapa SR, Udenze K, Bronner IF, Casandra D, Mayho M, Brown J (2018) Uncovering the essential genes of the human malaria parasite Plasmodium falciparum by saturation mutagenesis. Science 360:eaap7847CrossRefGoogle Scholar
  61. Zhang Q, Ma C, Oberli A, Zinz A, Engels S, Przyborski JM (2017) Proteomic analysis of exported chaperone/co-chaperone complexes of P. falciparum reveals an array of complex protein-protein interactions. Sci Rep 7:42188CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Vikash Kumar
    • 1
  • Ankita Behl
    • 2
  • Rachana Sharma
    • 1
  • Aanchal Sharma
    • 1
  • Rachna Hora
    • 1
    Email author
  1. 1.Department of Molecular Biology and BiochemistryGuru Nanak Dev UniversityAmritsarIndia
  2. 2.Department of BiotechnologyGuru Nanak Dev UniversityAmritsarIndia

Personalised recommendations