A high number of pfmdr1 gene copies in P. falciparum from Venezuela

  • César Pacheco
  • Jorge Moreno
  • Flor HerreraEmail author
Protozoology - Short Communication


Multidrug resistance in Plasmodium falciparum has been associated with gene amplification of pfmdr1. We studied the corresponding gene amplification in P. falciparum from blood samples of malaria patients in the Sifontes Municipality, Bolívar State, Venezuela, known as the highest region of incidence of malaria. Fifty-five P. falciparum DNA samples were extracted from different hosts and used for qPCR assessment of the copy number of pfmdr1. The assay detected four copies of the multidrug-resistant line P. falciparum Dd2 in comparison with the P. falciparum 3D7 that had only one copy. In the patients’ samples, the copy number of pfmdr1 was a single copy in 80% and 20% left distributed in different copy numbers up to seven.


Malaria P. falciparum pfmdr1 gene Venezuela 



The authors are grateful to all the patients who participated in the study; to the staff of the Field Research Center “Dr. Francesco Vitanza”, Tumeremo, Bolívar State, Venezuela, who provided technical assistance to the authors on collecting samples; to the Centers for Disease Control and Prevention of the USA that, through Dr. Eric Halsey, donated us the reference strains; and to Dr. Irene Bosch from the Massachusetts Institute of Technology USA for English language editing and checking. This work was supported by Fondo Nacional de Ciencia, Tecnología e Innovación, Venezuela (grant 2008000911-1).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethical approval

Ethical approval for the study was obtained from the Bioethics Committee of the Biomedical Research Institute of the University of Carabobo (protocol number CBIIB-UC/2016-3). The patients enrolled in the study were all adult and signed written informed consent.

Supplementary material

436_2019_6409_MOESM1_ESM.docx (96 kb)
ESM 1 (DOCX 95 kb)
436_2019_6409_MOESM2_ESM.docx (319 kb)
ESM 2 (DOCX 318 kb)
436_2019_6409_MOESM3_ESM.docx (19 kb)
ESM 3 (DOCX 19 kb)
436_2019_6409_MOESM4_ESM.docx (27 kb)
ESM 4 (DOCX 27 kb)


  1. Abou Orm S, Jiménez A, Agrela I et al (2014) Is the polymerase chain reaction (PCR) an alternative to microscopic diagnosis of malaria in Bolivar State, Venezuela? Comparison of both methods. Bol Mal Salud Amb 54:95–99Google Scholar
  2. Awab GR, Pukrittayakamee S, Jamornthanyawat N et al (2013) Prevalence of antifolate resistance mutations in Plasmodium falciparum isolates in Afghanistan. Malar J 12:96CrossRefGoogle Scholar
  3. Blasco B, Leroy D, Fidock D (2017) Antimalarial drug resistance: linking Plasmodium falciparum parasite biology to the clinic. Nat Med 23:917–928CrossRefGoogle Scholar
  4. Cheeseman IH, Miller B, Tan JC et al (2016) Population structure shapes copy number variation in malaria parasites. Mol Biol Evol 33:603–620CrossRefGoogle Scholar
  5. Costa GL, Amaral LC, Fernandes CJ et al (2017) Assessment of copy number variation in genes related to drug resistance in Plasmodium vivax and Plasmodium falciparum isolates from the Brazilian Amazon and a systematic review of the literature. Malar J 16:152CrossRefGoogle Scholar
  6. Cuia L, Wanga Z, Miaoa J et al (2012) Mechanisms of in vitro resistance to dihydroartemisinin in Plasmodium falciparum. Mol Microbiol 86:111–128CrossRefGoogle Scholar
  7. Duraisingh MT, Jones P, Sambou I et al (2000) The tyrosine-86 allele of the pfmdr1 gene of Plasmodium falciparum is associated with increased sensitivity to the anti-malarials mefloquine and artemisinin. Mol Biochem Parasitol 108:13–23CrossRefGoogle Scholar
  8. Ferreira I, do Rosário V, Cravo P (2006) Real-time quantitative PCR with SYBR Green I detection for estimating copy numbers of nine drug resistance candidate genes in Plasmodium falciparum. Malaria J 5:1CrossRefGoogle Scholar
  9. Friedrich O, Reiling SJ, Wunderlich J et al (2014) Assessment of Plasmodium falciparum PfMDR1 transport rates using Fluo-4. J Cell Mol Med 18:1851–1862CrossRefGoogle Scholar
  10. Gil JP, Krishna S (2017) pfmdr1 (Plasmodium falciparum multidrug drug resistance gene 1): a pivotal factor in malaria resistance to artemisinin combination therapies. Expert Review of Anti-infective Therapy.
  11. Griffing S, Syphard L, Sridaran S et al (2010) pfmdr1 amplification and fixation of pfcrt chloroquine resistance alleles in Plasmodium falciparum in Venezuela. Antimicrob Agents Chemother 54:1572–1579CrossRefGoogle Scholar
  12. Inoue J, Lopes D, do Rosario V et al (2014) Analysis of polymorphisms in Plasmodium falciparum genes related to drug resistance: a survey over four decades under different treatment policies in Brazil. Malar J 13:372CrossRefGoogle Scholar
  13. Khattak AA, Venkatesan M, Jacob CG et al (2013) A comprehensive survey of polymorphisms conferring anti-malarial resistance in Plasmodium falciparum across Pakistan. Malar J 12:300CrossRefGoogle Scholar
  14. Kremsner PG, Krishna S (2004) Antimalarial combinations. Lancet 364:285–294CrossRefGoogle Scholar
  15. Labadie-Bracho M, Adhin MR (2013) Increased pfmdr1 copy number in Plasmodium falciparum isolates from Suriname. Tropical Med Int Health 18:796–799CrossRefGoogle Scholar
  16. Legrand E, Yrinesi J, Ekala MT et al (2012) Discordant temporal evolution of Pfcrt and Pfmdr1 genotypes and Plasmodium falciparum in vitro drug susceptibility to 4-aminoquinolines after drug policy change in French Guiana. Antimicrob Agents Chemother 56:1382–1389CrossRefGoogle Scholar
  17. Pacheco C, Moreno J, Herrera F (2019) Molecular detection and species determination of malaria parasites, Venezuela. Emerg Infect Dis 25:355–357CrossRefGoogle Scholar
  18. Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29:2002–2007CrossRefGoogle Scholar
  19. Pirahmadi S, Zakeri S, Afsharpad M et al (2013) Mutation analysis in pfmdr1 and pfmrp1 as potential candidate genes for artemisinin resistance in Plasmodium falciparum clinical isolates 4 years after implementation of artemisinin combination therapy in Iran. Infect Genet Evol 14:327–334CrossRefGoogle Scholar
  20. Price RN, Uhlemann AC, Brockman A et al (2004) Mefloquine resistance in Plasmodium falciparum and increased pfmdr1 gene copy number. Lancet 364:438–447CrossRefGoogle Scholar
  21. Price RN, Uhlemann AC, van Vugt M et al (2006) Molecular and pharmacological determinants of the therapeutic response to artemether-lumefantrine in multidrug-resistant Plasmodium falciparum malaria. Clin Infect Dis 42:1570–1577CrossRefGoogle Scholar
  22. Reed MB, Saliba KJ, Caruana SR et al (2000) Pgh1 modulates sensitivity and resistance to multiple antimalarials in Plasmodium falciparum. Nature 403:906–909CrossRefGoogle Scholar
  23. Salanti A, Staalsoe T, Lavstsen T et al (2003) Selective upregulation of a single distinctly structured var gene in chondroitin sulphate A-adhering Plasmodium falciparum involved in pregnancy-associated malaria. Mol Microbiol 49:179–191CrossRefGoogle Scholar
  24. Sidhu AB, Valderramos SG, Fidock DA (2005) pfmdr1 mutations contribute to quinine resistance and enhance mefloquine and artemisinin sensitivity in Plasmodium falciparum. Mol Microbiol 57:913–926CrossRefGoogle Scholar
  25. Sidhu AB, Uhlemann A-C, Valderramos SG et al (2006) Decreasing pfmdr1 copy number in Plasmodium falciparum malaria heightens susceptibility to mefloquine, lumefantrine, halofantrine, quinine, and artemisinin. J Infect Dis 194:528–535CrossRefGoogle Scholar
  26. Snounou G, Viriyakosol S, Zhu Z et al (1993) High sensitivity of detection of human malaria parasites by the use of nested polymerase chain reaction. Mol Biochem Parasitol 61:315–329CrossRefGoogle Scholar
  27. Veiga MI, Dhingra SK, Henrich PP et al (2016) Globally prevalent PfMDR1 mutations modulate Plasmodium falciparum susceptibility to artemisinin-based combination therapies. Nat Commun 7:11553CrossRefGoogle Scholar
  28. Wellems T, Panton L, Guzman Y et al (1990) Chloroquine resistance not linked to mdr-like genes in a Plasmodium falciparum cross. Nature 345:253–255CrossRefGoogle Scholar
  29. World Health Organization (2017) World malaria report 2017. World Health Organization, GenevaCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Instituto de Investigaciones Biomédicas (BIOMED), Facultad de Ciencias de la SaludUniversidad de CaraboboMaracayVenezuela
  2. 2.Centro de Investigaciones de Campo “Dr. Francesco Vitanza”, Servicio Autónomo Instituto de Altos Estudios “Dr. Arnoldo Gabaldon”MPPSTumeremoVenezuela

Personalised recommendations