Prevalence of Cryptosporidium parvum in dairy calves and GP60 subtyping of diarrheic calves in central Argentina

  • Joaquín A. LombardelliEmail author
  • Mariela L. Tomazic
  • Leonhard Schnittger
  • Karina I. Tiranti
Protozoology - Original Paper


Cryptosporidiosis of calves is caused by the enteroprotozoan Cryptosporidium spp. The disease results in intense diarrhea of calves associated with substantial economic losses in dairy farming worldwide. The aim of this study was to determine calf, herd, and within-herd Cryptosporidium prevalence and identify Cryptosporidium species and subtypes in calves with diarrhea in intensive dairy herds in central Argentina. A total of 1073 fecal samples were collected from 54 randomly selected dairy herds. Cryptosporidium-oocysts were isolated and concentrated from fecal samples using formol-ether and detected by light microscopy with the modified Ziehl-Neelsen technique. Overall prevalence of oocyst-excreting calves was found to be 25.5% (274/1073) (95% C.I. 22.9; 28.1%). Of the herds studied, 89% (48/54) included at least one infected calf, whereas within-herd prevalence ranged from the absence of infection to 57% (20/35). A highly significant association was found between the presence of diarrhea and C. parvum infection (χ2 = 55.89, p < 0.001). For species determination, genomic DNA isolated from oocyst-positive fecal samples was subjected to PCR-RFLP of the 18S rRNA gene resulting exclusively in Cryptosporidium parvum identification. C. parvum isolates of calves displaying diarrhea and high rate of excretion of oocysts were subtyped by PCR amplification and direct sequencing of the 60 kDa glycoprotein (GP60) gene. Altogether five GP60 subtypes, designated IIaA18G1R1, IIaA20G1R1, IIaA21G1R1, IIaA22G1R1, and IIaA24G1R1 were identified. Interestingly, IIaA18G1R1 and IIaA20G1R1 were predominant in calves with diarrhea and high infection intensity. Notably, IIaA24G1R1 represents a novel, previously unrecognized C. parvum subtype. The subtype IIaA18G1R1, frequently found in this study, is strongly implicated in zoonotic transmission. These results suggest that calves might be an important source for human cryptosporidiosis in Argentina.


Cryptosporidium parvum GP60 subtype Dairy calves Diarrhea Prevalence Zoonotic transmission Argentina 



This project was supported by the Proyectos y Programas de Investigación-Universidad Nacional de Río Cuarto (Fomento No. A338), Agencia Nacional de la Promoción Científica y Tecnológica (ANPCyT) (PICT 2013-1708, PICT 2012-0695), and Fundación Universidad de Morón (PID 8-2015). The authors acknowledge the students Georgina Matteo, Santiago Hernandez, and Maria Luz Gomez Vega for sample processing and field visits and all participating producers.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


All procedures performed in studies involving animals were in accordance with the standards of the Research Ethics Committee of the Universidad Nacional de Río Cuarto (approval number 47/11 and 173/16).

Supplementary material

436_2019_6366_MOESM1_ESM.docx (18 kb)
ESM 1 (DOCX 17 kb)


  1. Adamu H, Petros B, Zhang G, Kassa H, Amer S, Ye J, Feng Y, Xiao L (2014) Distribution and clinical manifestations of Cryptosporidium species and subtypes in HIV/AIDS patients in Ethiopia. PLoS Negl Trop Dis 8(4):e2831. CrossRefGoogle Scholar
  2. Al Mawly J, Grinberg A, Prattley D, Moffat J, Marshall J, French N (2015) Risk factors for neonatal calf diarrhoea and enteropathogen shedding in New Zealand dairy farms. Vet J 203:155–160. CrossRefGoogle Scholar
  3. Alves M, Xiao L, Sulaiman I, Lal AA, Matos O, Antunes F (2003) Subgenotype analysis of Cryptosporidium isolates from humans, cattle, and zoo ruminants in Portugal. J Clin Microbiol 41:2744–2747.
  4. Amer S, Honma H, Ikarashi M, Tada C, Fukuda Y, Suyama Y, Nakai Y (2010) Cryptosporidium genotypes and subtypes in dairy calves in Egypt. Vet Parasitol 169:382–386. CrossRefGoogle Scholar
  5. Avendaño C, Ramo A, Vergara-Castiblanco C, Sánchez-Acedo C, Quílez J (2018) Genetic uniqueness of Cryptosporidium parvum from dairy calves in Colombia. Parasitol Res 117:1317–1323. CrossRefGoogle Scholar
  6. Brook E, Hart CA, French N, Christley R (2008) Prevalence and risk factors for Cryptosporidium spp. infection in young calves. Vet Parasitol 152:46–52. CrossRefGoogle Scholar
  7. Brook EJ, Anthony Hart C, French NP, Christley RM (2009) Molecular epidemiology of Cryptosporidium subtypes in cattle in England. Vet J 179:378–382. CrossRefGoogle Scholar
  8. Cama VA, Ross JM, Crawford S, Kawai S, Chavez-Valdez R, Vargas D et al (2007) Differences in clinical manifestations among Cryptosporidium species and subtypes in HIV-infected persons. JID 196:684–691. CrossRefGoogle Scholar
  9. Chalmers RM, Smith RP, Hadfield SJ, Elwin K, Giles M (2011) Zoonotic linkage and variation in Cryptosporidium parvum from patients in the United Kingdom. Parasit Res 108:1321–1325. CrossRefGoogle Scholar
  10. Chartier C, Rieux A, Delafosse A, Lehebel A, Paraud C (2013) Detection of Cryptosporidium oocysts in fresh calf faeces: characteristics of two simple tests and evaluation of a semi-quantitative approach. Vet J 198:148–152. CrossRefGoogle Scholar
  11. Coklin T, Farber J, Parrington L, Dixon B (2007) Prevalence and molecular characterization of Giardia duodenalis and Cryptosporidium spp. in dairy cattle in Ontario, Canada. Vet Parasitol 150:297–305. CrossRefGoogle Scholar
  12. Del Coco VF, Córdoba MA, Basualdo JA (2008) Cryptosporidium infection in calves from a rural area of Buenos Aires. Argentina Vet Parasitol 158:31–35. CrossRefGoogle Scholar
  13. Del Coco VF, Córdoba MA, Bilbao G, Pinto de Almeida Castro A, Basualdo JA, Fayer R et al (2014) Cryptosporidium parvum GP60 subtypes in dairy cattle from Buenos Aires, Argentina. Res Vet Sci 96:311–314. CrossRefGoogle Scholar
  14. Delafosse A, Chartier C, Dupuya MC, Dumoulin M, Pors I, Paraud C (2015) Cryptosporidium parvum infection and associated risk factors in dairy calves in western France. Prev Vet Med 118:406–412. CrossRefGoogle Scholar
  15. do Couto MCM, Lima MD, Bomfim TC (2013) New Cryptosporidium parvum subtypes of IIa subfamily in dairy calves from Brazil. Acta Trop 130:117–122. CrossRefGoogle Scholar
  16. Feng Y, Ortega Y, He G, Das P, Xu M, Zhang X, Fayer R, Gatei W, Cama V, Xiao L (2007) Wide geographic distribution of Cryptosporidium bovis and the deer-like genotype in bovines. Vet Par 144:1–9. CrossRefGoogle Scholar
  17. Garro CJ, Morici GE, Utgés ME, Tomazic ML, Schnittger L (2016) Prevalence and risk factors for shedding of Cryptosporidium spp. oocysts in dairy calves of Buenos Aires Province, Argentina. Parasite Epidemiol Control 1:36–41. CrossRefGoogle Scholar
  18. Garro CJ, Morici G, Tomazic M, Vilte D, Bok M, Vega C, Parreño V, Schnittger L (2017) Prevalencia y patogenicidad de Cryptosporidium spp. en comparación con otros enteropatogenos de terneros de rodeos lecheros. II Jornadas de Investigación FCEQN UM, Moron, Argentina, 3 de Oct.Google Scholar
  19. Hamnes IS, Gjerde B, Robertson L (2006) Prevalence of Giardia and Cryptosporidium in dairy calves in three areas of Norway. Vet Parasitol 140:204–216. CrossRefGoogle Scholar
  20. Henriksen SA, Pohlenz JFL (1981) Staining of cryptosporidia by a modified Ziehl-Neelsen technique. Acta Vet Scand 22:594–596Google Scholar
  21. Instituto Nacional de Estadística y Censos de la República Argentina (INDEC) (2008) Censo Nacional Agropecuario htpp: (Accessed 09.07.16)
  22. Insulander M, Silverlås C, Lebbad M, Karlsson L, Mattsson JG, Svenungsson B (2013) Molecular epidemiology and clinical manifestations of human cryptosporidiosis in Sweden. Epidemiol Infect 141:1009–1020. CrossRefGoogle Scholar
  23. Izzo MM, Kirkland PD, Mohler VL, Perkins NR, Gunna AA, House JK (2011) Prevalence of major enteric pathogens in Australian dairy calves with diarrhea. Aust Vet J 89(5):167–173. CrossRefGoogle Scholar
  24. Kaupke A, Rzeżutka A (2015) Emergence of novel subtypes of Cryptosporidium parvum in calves in Poland. Parasitol Res 114:4709–4716. CrossRefGoogle Scholar
  25. Kinross P, Beser J, Troell K, Silverlås C, Björkman C, Lebbad M et al (2015) Cryptosporidium parvum infections in a cohort of veterinary students in Sweden. Epidemiol Infect 143:2748–2756. CrossRefGoogle Scholar
  26. Kotloff KL, Nataro JP, Blackwelder WC, Nasrin D, Farag TH, Panchalingam S, Wu Y, Sow SO, Sur D, Breiman RF, Faruque ASG, Zaidi AKM, Saha D, Alonso PL, Tamboura B, Sanogo D, Onwuchekwa U, Manna B, Ramamurthy T, Kanungo S, Ochieng JB, Omore R, Oundo JO, Hossain A, Das SK, Ahmed S, Qureshi S, Quadri F, Adegbola RA, Antonio M, Hossain MJ, Akinsola A, Mandomando I, Nhampossa T, Acácio S, Biswas K, O'Reilly CE, Mintz ED, Berkeley LY, Muhsen K, Sommerfelt H, Robins-Browne RM, Levine MM (2013) Burden and aetiology of diarrhoeal disease in infants and young children in developing countries (the global enteric multicenter study, GEMS): a prospective, case-control study. Lancet 382:209–222. CrossRefGoogle Scholar
  27. Kváč M, Hromadová N, Kvetonová D, Rost M, Sak B (2011) Molecular characterization of Cryptosporidium spp. in pre-weaned dairy calves in the Czech Republic: absence of C. ryanae and management-associated distribution of C. andersoni, C. bovis and C. parvum subtypes. Vet Parasitol 177:378–382. CrossRefGoogle Scholar
  28. Mcguirk SM (2008) Disease management of dairy calves and heifers. Vet Clin N Am Food Anim Pract 24:139–153. CrossRefGoogle Scholar
  29. Meganck V, Hoflack G, Piepers S, Opsomer G (2015) Evaluation of a protocol to reduce the incidence of neonatal calf diarrhoea on dairy herds. Prev Vet Med 118:64–70. CrossRefGoogle Scholar
  30. Misic Z, Abe N (2007) Subtype analysis of Cryptosporidium parvum isolates from calves on farms around Belgrade, Serbia and Montenegro, using the 60kDa glycoprotein gene sequences. Parasitol 134:351–358. CrossRefGoogle Scholar
  31. Olson ME, O’Handley RM, Ralston BJ, McAllister TA, Thompson RCA (2004) Update on Cryptosporidium and Giardia infections in cattle. Trends Parasitol 20:185–191. CrossRefGoogle Scholar
  32. Peralta RH, Velásquez JN, Cunha FS, Pantano ML, Sodré FC, Silva S, Astudillo OG, Peralta JM, Carnevale S (2016) Genetic diversity of Cryptosporidium identified in clinical samples from cities in Brazil and Argentina. Mem Inst Oswaldo Cruz 111:30–36. CrossRefGoogle Scholar
  33. Plutzer J, Karanis P (2007) Genotype and subtype analyses of Cryptosporidium isolates from cattle in Hungary. Vet Parasitol 146:357–362. CrossRefGoogle Scholar
  34. Qi MZ, Fang YQ, Wang XT, Zhang LX, Wang RJ, Du SZ et al (2015) Molecular characterization of Cryptosporidium spp. in pre-weaned calves in Shaanxi Province, North-Western China. J Med Microb 64:111–116. CrossRefGoogle Scholar
  35. Ryan U, Fayer R, Xiao L (2014) Cryptosporidium species in humans and animals: current understanding and research needs. Parasitology. 141:1667–1685. CrossRefGoogle Scholar
  36. Sánchez C, Suero M, Castignani H, Terán JC, Marino M (2012) Estado actual y evolución de la lechería argentina (2008-2011). Reunión Anual de la Asociación Argentina de Economía Agraria. Corrientes. ArgentinaGoogle Scholar
  37. Santín M, Trout JM, Fayer R (2008) A longitudinal study of cryptosporidiosis in dairy cattle from birth to 2 years of age. Vet Parasitol 155:15–23. CrossRefGoogle Scholar
  38. Silverlås C, Emanuelson U, de Verdier K, Bjorkman C (2009) Prevalence and associated management factors of Cryptosporidium shedding in 50 Swedish dairy herds. Prev Vet Med 90:242–253. CrossRefGoogle Scholar
  39. Silverlås C, Bosaeus-Reineck H, Näslund K, Björkman C (2013) Is there a need for improved Cryptosporidium diagnostics in Swedish calves? Inter J Parasit 43:155–161. CrossRefGoogle Scholar
  40. Singh BB, Sharma R, Kumar H, Banga HS, Singh Aulakh R, Singh Gill JP et al (2006) Prevalence of Cryptosporidium parvum infection in Punjab (India) and its association with diarrhea in neonatal dairy calves. Vet Parasitol 140:162–165. CrossRefGoogle Scholar
  41. Smith RP, Clifton-Hadley FA, Cheney T, Giles M (2014) Prevalence and molecular typing of Cryptosporidium in dairy cattle in England and Wales and examination of potential on-farm transmission routes. Vet Parasitol 204:111–119. CrossRefGoogle Scholar
  42. Sulaiman IM, Hira PR, Zhou L, Al-Ali FM, Al-Shelahi FA, Shweiki HM et al (2005) Unique endemicity of cryptosporidiosis in children in Kuwait. J Clin Microbiol 43:2805–2809. CrossRefGoogle Scholar
  43. Thompson RCA, Ash A (2016) Molecular epidemiology of Giardia and Cryptosporidium infections. Infec Gen Evolut 40:315–323. CrossRefGoogle Scholar
  44. Tiranti K, Larriestra A, Vissio C, Picco N, Alustiza F, Degioanni A, Vivas A (2011) Prevalence of Cryptosporidium spp. and Giardia spp., spatial clustering and patterns of shedding in dairy calves from Córdoba, Argentina. R Bras Parasitol Vet 20:65–72. Google Scholar
  45. Tomazic ML, Maidana J, Dominguez M, Louge Uriarte E, Galarza R, Garro C et al (2013) Molecular characterization of Cryptosporidium isolates from calves in Argentina. Vet Parasitol 198:382–386. CrossRefGoogle Scholar
  46. Trotz-Williams LA, Martin SW, Leslie KE, Duffield T, Nydam DV, Peregrine AS (2008) Association between management practices and within-herd prevalence of Cryptosporidium parvum shedding on dairy farms in southern Ontario. Prev Vet Med 83:11–23. CrossRefGoogle Scholar
  47. Wielinga PR, de Vries A, van der Goot TH, Mank T, Mars MH, Kortbeek LM, van der Giessen JWB (2008) Molecular epidemiology of Cryptosporidium in humans and cattle in the Netherlands. Int J Parasitol 38:809–817. CrossRefGoogle Scholar
  48. Xiao L (2010) Molecular epidemiology of cryptosporidiosis: an update. Exp Parasitol 124:80–89. CrossRefGoogle Scholar
  49. Xiao L, Fayer R (2008) Molecular characterization of species and genotypes of Cryptosporidium and Giardia and assessment of zoonotic transmission. Int J Parasitol 38:1239–1255. CrossRefGoogle Scholar
  50. Xiao L, Feng Y (2008) Zoonotic cryptosporidiosis. FEMS Immunol Med Mic 52:309–323. CrossRefGoogle Scholar
  51. Xiao L, Escalante L, Yang C, Escalante AA, Montali RJ, Fayer R, Lal AA, Sulaiman I (1999) Phylogenetic analysis of Cryptosporidium parasites based on the small-subunit rRNA gene locus. Appl EnvironMicrobiol 65:1578–1583Google Scholar
  52. Young KH, Bullock SL, Melvin DM, Spruill CL (1979) Ethyl acetate as a substitute for diethyl ether in the formalin ether sedimentation technique. J Clin Microb 10:852–853Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Departamento de Patología AnimalUniversidad Nacional de Río CuartoCórdobaArgentina
  2. 2.Consejo Nacional de Investigaciones Científico y Técnicas (CONICET)Buenos AiresArgentina
  3. 3.Instituto de Patobiología Veterinaria, CICVyA INTA-CastelarBuenos AiresArgentina
  4. 4.Facultad de Ciencias Exactas, Químicas y NaturalesUniversidad de MorónBuenos AiresArgentina

Personalised recommendations