Advertisement

Molecular and morphological characterization of the metacercariae of two species of diplostomid trematodes (Platyhelminthes, Digenea) in freshwater fishes of the Batalha River, Brazil

  • Larissa Sbeghen Pelegrini
  • Thayana Gião
  • Diego Henrique Mirandola Dias Vieira
  • Maria Isabel Müller
  • Reinaldo José da Silva
  • Gerardo Pérez-Ponce de León
  • Rodney Kozlowiski de Azevedo
  • Vanessa Doro AbdallahEmail author
Fish Parasitology - Original Paper

Abstract

The Diplostomidae include a large group of flatworms with complex life cycles and are frequently found parasitizing the eyes and central nervous system of freshwater fishes. The morphological identification of the metacercariae at species level is not always possible. Thus, molecular tools have become essential to assist in the parasite species determination. This study was aimed at describing two diplostomid metacercariae found in freshwater fish in São Paulo, Brazil, based on morphological characters and in the genetic characterization of COI sequences. Our results showed that the two recognized taxa (Tylodelphys sp. and Diplostomidae gen. sp.) appear to be different from the species already described in South America. Tylodelphys sp. differs morphologically from Tylodelphys xenopi, T. mashonense, T. jenynsiae, and T. scheuringi. The metacercariae of T. clavata and T. conifera are smaller than Tylodelphys sp., while T. podicipina is larger than the metacercariae described here. The phylogenetic analysis of COI sequences yielded Tylodelphys sp. as the sister species of Tylodelphys sp. 4, a species reported from the brain of the eleotrid Gobiomorus maculatus in Oaxaca, Mexico. The metacercariae identified as Diplostomidae gen. sp. are morphologically different from the known diplostomid metacercariae and did not match with other diplostomid sequences available. Diplostomidae gen. sp. is recovered as the sister species of Diplostomum ardeae. Although the morphological evidence and the COI sequences differentiate the metacercariae found, the absence of adult specimens of both species precludes the specific designation. This is one of the first papers that use an integrative taxonomy approach to describe the species diversity of diplostomid trematodes in Brazil.

Keywords

Fish parasites Flatworms Trematoda Cytochrome c oxidase Morphological analysis Bayesian analysis 

Notes

Acknowledgments

The authors would like to thank Tiago dos Santos Tardivo and Carolina Massucci M. da Silva from the Center for Electronic Microscopy in the Department of Biosciences of UNESP Botucatu for their assistance with the scanning electron microscope (SEM) preparations.

Funding information

The present work was supported by a research fellowship from the São Paulo Research Foundation, or FAPESP (V. D. A., 2012/23655-0), (R. K. A., 2014/12862-0), (R. J. S., 2016/50377-1); M.I.M. (grant number CAPES AUX-PE-PNPD 3005/2010 and the Young Researcher Program PROPE-UNESP 02/2016, FAPESP 2017/16546-3) by the Conselho Nacional de Desenvolvimento Científico e Tecnológico, or CNPq (R. J. S., 309125/2017-0) and by CNPq-PROTAX (R. J. S., 440496/2015-2). G.P.P.L. received support from the program PAPIIT-UNAM IN202617.

Compliance with ethical standards

The euthanasia methodologies of the host fish were carried out following the guidelines of the National Council of the Animal Experimentation Control (CONCEA), and the research project was submitted to the Ethical Committee on Animal Use (CEUA) of the Universidade do Sagrado Coração (USC) (authorization no. 3353050417).

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

436_2019_6362_MOESM1_ESM.doc (89 kb)
ESM 1 (DOC 89 kb)

References

  1. Alcántar-Escalera FJ, García-Varela M, Vazquez-Domínguez E, Pérez-Ponce de León G (2013) Using DNA barcoding to link cystacanths and adults of the acanthocephalan Polymorphus brevis in Central Mexico. Mol Ecol Resour 13:1116–1124.  https://doi.org/10.1111/1755-0998.12090 Google Scholar
  2. Blasco-Costa I, Locke SA (2017) Life history, systematics and evolution of the Diplostomoidea Poirier, 1886: progress, promises and challenges emerging from molecular studies. Adv Parasitol 98:167–225.  https://doi.org/10.1016/bs.apar.2017.05.001 CrossRefGoogle Scholar
  3. Blasco-Costa I, Poulin R, Presswell B (2017) Morphological description and molecular analyses of Tylodelphys sp. (Trematoda: Diplostomidae) newly recorded from the freshwater fish Gobiomorphus cotidianus (common bully) in New Zealand. J Helminthol 91:332–345.  https://doi.org/10.1017/s0022149x16000298 CrossRefGoogle Scholar
  4. Briosio-Aguilar R, Pinto HA, Rodríguez-Santiago MA, López-García MA, García-Varela M, Pérez-Ponce de León G (2018) Link between the adult and the metacercaria of Clinostomum heluans Braun, 1899 (Trematoda: Clinostomidae) through DNA sequences, and its phylogenetic position within the genus Clinostomum Leidy, 1856. J Parasitol 104:292–296.  https://doi.org/10.1645/17-183 CrossRefGoogle Scholar
  5. Bush AO, Lafferty KD, Lotz JM, Shostak AW (1997) Parasitology meets ecology on its own terms: Margolis et al., revisited. J Parasitol 83:575–593.  https://doi.org/10.2307/3284227 CrossRefGoogle Scholar
  6. Chappell LH (1995) The biology of diplostomatid eye flukes of fishes. J Helminthol 69:97–101.  https://doi.org/10.1017/s0022149x00013961 CrossRefGoogle Scholar
  7. Chappell LH, Hardie LJ, Secombes CJ (1994) Diplostomiasis: the disease and host–parasite interactions. In: Pike AW, Lewis JW (ed) Parasitic diseases of fish. Samara Publishing, Dyfed, pp 59–86Google Scholar
  8. Chibwana FD, Nkwengulila G (2010) Variation in the morphometrics of diplostomid metacercariae (Digenea: Trematoda) infecting the catfish, Clarias gariepinus in Tanzania. J Helminthol 84:61–70.  https://doi.org/10.1017/s0022149x09990083 CrossRefGoogle Scholar
  9. Chibwana FD, Blasco-Costa I, Georgieva S, Hosea KM, Nkwengulila G, Scholz T, Kostandinova A (2013) A first insight into the barcodes for African diplostomids (Digenea: Diplostomidae): brain parasites in Clarias gariepinus (Siluriformes: Clariidae). Infect Genet Evol 17:62–70.  https://doi.org/10.1016/j.meegid.2013.03.037 CrossRefGoogle Scholar
  10. Chibwana FD, Nkwengulila G, Locke SA, Mclaughlin JD, Marcogliese DJ (2015) Completion of the life cycle of Tylodelphys mashonense (Sudarikov, 1971) (Digenea: Diplostomidae) with DNA barcodes and rDNA sequences. Parasitol Res 114:3675–3682.  https://doi.org/10.1007/s00436-015-4595-8 CrossRefGoogle Scholar
  11. Criscione CD, Poulin R, Blouin MS (2005) Molecular ecology of parasites: elucidating ecological and microevolutionary processes. Mol Ecol 14:2247–2257.  https://doi.org/10.1111/j.1365-294x.2005.02587.x CrossRefGoogle Scholar
  12. Dang, R (2016) Tylodelphys clavata cytochrome oxidase subunit 1 (COI) gene, partial cds; mitochondrial. Xinjiang Agricultural University, China. Direct Submission. Available from https://www.ncbi.nlm.nih.gov/nuccore/KY271544.1
  13. Dubois G (1968) Synopsis des Strigeidae et des Diplostomidae (Trematoda). Mem Soc Sci Nat Neuchatel 10:1–258Google Scholar
  14. Dubois G (1969) Notes helminthologiques. II. Diplostomatidae Poirier et. Cyathocotylidae Poche (Trematoda). Rev Suisse Zool 76:3–21.  https://doi.org/10.5962/bhl.part.146029 CrossRefGoogle Scholar
  15. Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32(5):1792–1797.  https://doi.org/10.1093/nar/gkh340 CrossRefGoogle Scholar
  16. Eiras JC, Takemoto, RM, Pavanelli GC (2006) Métodos de estudo e técnicas laboratoriais em parasitologia de peixes. Eduem, MaringáGoogle Scholar
  17. Fernandes BMM, Justo MCN, Cárdenas MQ, Cohen SC (2015) South american trematodes parasites of birds and mammals. Oficina de Livros, Rio de JaneiroGoogle Scholar
  18. García-Varela M, Sereno-Uribe AL, Pinacho-Pinacho CD, Domínguez-Domínguez O, Pérez-Ponce de León G (2016a) Molecular and morphological characterization of Austrodiplostomum ostrowskiae Dronen, 2009 (Digenea: Diplostomidae) a parasite of cormorants in the Americas. J Helminthol 90:174–185.  https://doi.org/10.1017/s0022149x1500005x CrossRefGoogle Scholar
  19. García-Varela M, Sereno-Uribe AL, Pinacho-Pinacho CD, Hernández- Cruz E, Pérez-Ponce de León G (2016b) An integrative taxonomic study reveals a new species of Tylodelphys Diesing, 1950 (Digenea: Diplostomidae) in central and northern Mexico. J Helminthol 90:668–679.  https://doi.org/10.1017/s0022149x15000917 CrossRefGoogle Scholar
  20. Gordy MA, Locke SA, Rawlings TA, Lapierre AR, Hanington PC (2017) Molecular and morphological evidence for nine species in North American Australapatemon (Sudarikov, 1959): a phylogeny expansion with description of the zygocercous Australapatemon mclaughlini n. sp. Parasitol Res 116:1–18.  https://doi.org/10.1007/s00436-017-5523-x CrossRefGoogle Scholar
  21. Graczyk T (1991) Variability of metacercariae of Diplostomum spathaceum (Rudolphi, 1819) (Trematoda, Diplostomidae). Acta Parasitol 36:135–139Google Scholar
  22. Guindon S, Gascuel O (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52:696–704.  https://doi.org/10.1080/10635150390235520 CrossRefGoogle Scholar
  23. Hernández-Cruz E, Hernández-Orts JS, Sereno-Uribe AL, Pérez-Ponce de Leon G, García-Varela M (2017) Multilocus phylogenetic analysis and morphological data reveal a new species composition of the genus Drepanocephalus Dietz, 1909 (Digenea: Echinostomatidae), parasites of fish-eating birds in the Americas. J Helminthol 4:1–24.  https://doi.org/10.1017/s0022149x17000815 Google Scholar
  24. Hughes RC (1929) Studies on the trematode family Strigeidae (Holostomidae) no. XIX. Diplostomulum scheuringi sp. nov. and D. vegrandis (La Rue). J Parasitol 15:267–271.  https://doi.org/10.2307/3271981 CrossRefGoogle Scholar
  25. Illán G, de Blas I, Ruíz-Zarzuela I (2013) Hysteromorpha triloba: primer registro de la presencia de la Enfermedad del Punto Negro en aguas continentales de Castilla y León (España). AquaTIC 39:36–43Google Scholar
  26. Karvonen A, Paukku S, Sepp O, Valtonen ET (2005) Resistance against eye flukes: native versus previously infected fish. Parasitol Res 91:55–59.  https://doi.org/10.1007/s00436-004-1246-x CrossRefGoogle Scholar
  27. Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, Buxton S, Cooper A, Markowitz S, Duran C, Thierer T, Ashton B, Meintjes P, Drummond A (2012) Geneious basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28:1647–1649  https://doi.org/10.1093/bioinformatics/bts199 CrossRefGoogle Scholar
  28. Kimura M (1980) A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120.  https://doi.org/10.1007/bf01731581 CrossRefGoogle Scholar
  29. King PH, Van As JG (1997) Description of the adult and larval stages of Tylodelphys xenopi (Trematoda: Diplostomidae) from southern Africa. J Parasitol 83:287–295.  https://doi.org/10.2307/3284458 CrossRefGoogle Scholar
  30. Kreider T, Anthony RM, Urban JF, Gause WC (2007) Alternatively activated macrophages in helminth infections. Curr Opin Immunol 19:448–453.  https://doi.org/10.1016/j.coi.2007.07.002 CrossRefGoogle Scholar
  31. Kuhn JA, Kristoffersen R, Knudsen R, Jakobsen J, Marcogliese DJ, Locke SA, R. Primicerio R, Amundsen PA (2015) Parasite communities of two three-spined stickleback populations in subarctic Norway—effects of a small spatial-scale host introduction. Parasitol Res 114(4): 1327–1339.  https://doi.org/10.1007/s00436-015-4309-2
  32. Locke SA, Al-Nasiri FS, Caffara M, Drago F, Kalbe M, Lapierre AR, McLaughlin JD, Nie P, Overstreet RM, Souza GTR, Takemoto RM, Marcogliese DJ (2015) Diversity, specificity and speciation in larval Diplostomidae (Platyhelminthes: Digenea) in the eyes of freshwater fish, as revealed by DNA barcodes. Int J Parasitol 45:841–855.  https://doi.org/10.1016/j.ijpara.2015.07.001 CrossRefGoogle Scholar
  33. Locke SA, McLaughlin JD, Dayanandan S, Marcogliese DJ (2010) Diversity and specificity in Diplostomum spp. metacercariae in freshwater fishes revealed by cytochrome c oxidase I and internal transcribed spacer sequences. Int J Parasitol 40:333–343.  https://doi.org/10.1016/j.ijpara.2009.08.012 CrossRefGoogle Scholar
  34. Locke SA, McLaughlin JD, Lapierre AR, Johnson PTJ, Marcogliese DJ (2011) Linking larvae and adults of Apharyngostrigea cornu, Hysteromorpha triloba, and Alaria mustelae (Diplostomoidea: Digenea) using molecular data. J Parasitol 97:846–851.  https://doi.org/10.1645/ge-2775.1 CrossRefGoogle Scholar
  35. López-Hernández D, Locke SA, de MAL, Rabelo ÉML, Pinto HÁ (2018) Molecular, morphological and experimental assessment of the life cycle of Posthodiplostomum nanum Dubois, 1937 (Trematoda: Diplostomidae) from Brazil, with phylogenetic evidence of the paraphyly of the genus Posthodiplostomum Dubois, 1936. Infect Genet Evol 63:95–103.  https://doi.org/10.1016/j.meegid.2018.05.010 CrossRefGoogle Scholar
  36. Lutz A (1931) Contribuição ao conhecimento da ontogenia das Strigeidas. I. Ontogenia de Hemistomum trilobum (Rudolphi, 1819). II. Ontogenia do gênero Apharyngostrigea Ciurea. Mem Inst Oswaldo Cruz 25:333–342.  https://doi.org/10.1590/s0074-02761931000400005 CrossRefGoogle Scholar
  37. Mccoy KD (2003) Sympatric speciation in parasites – what is sympatry? Trends Parasitol 19:400–404.  https://doi.org/10.1016/s1471-4922(03)00194-6 CrossRefGoogle Scholar
  38. Moema EBE, King PH, Rakgole JN, Baker C (2013) Descriptions of diplostomid metacercariae (Digenea: Diplostomidae) from freshwater fishes in the Tshwane area. Onderstepoort J Vet Res 80:1–7.  https://doi.org/10.4102/ojvr.v80i1.611 CrossRefGoogle Scholar
  39. Moszczynska A, Locke SA, McLaughlin JD, Marcogliese DJ, Crease TJ (2009) Development of primers for the mitochondrial cytochrome c oxidase I gene in digenetic trematodes (Platyhelminthes) illustrates the challenge of barcoding parasitic helminths. Mol Ecol Resour 9:75–82.  https://doi.org/10.1111/j.1755-0998.2009.02634.x CrossRefGoogle Scholar
  40. Nadler SA, Perez-Ponce de León G (2011) Integrating molecular and morphological approaches for characterizing parasite cryptic species: implications for parasitology. Parasitology 138:1688–1709.  https://doi.org/10.1017/s003118201000168x CrossRefGoogle Scholar
  41. Niewiadomska K (2002) Family Diplostomidae Poirrier 1886. In: Gibson DI, Jones A, Bray RA (ed) Keys to the Trematoda. CABI Publishing, Oxon, UK, pp 167–196Google Scholar
  42. Niewiadomska K, Niewiadomska-Bugaj M (1995) Optimal identification procedure for Diplostomum paracaudum (Iles, 1959) and D. pseudospathaceum Niewiadomska, 1984 metacercariae (Digenea) based on morphological characters. Syst Parasitol 30:165–171.  https://doi.org/10.1007/bf00010467 CrossRefGoogle Scholar
  43. Nolan MJ, Cribb TH (2005) The use and implications of ribosomal DNA sequencing for the discrimination of digenean species. Adv Parasitol 60:102–163.  https://doi.org/10.1016/s0065-308x(05)60002-4 Google Scholar
  44. Olson PD, Tkach VV (2005) Advances and trends in the molecular systematics of the parasitic Platyhelminthes. Adv Parasitol 60:165–243.  https://doi.org/10.1016/s0065-308x(05)60003-6 CrossRefGoogle Scholar
  45. Ostrowski de Núñez M (2017) Redescription of Austrodiplostomum compactum (Trematoda: Diplostomidae) from its type host and locality in Venezuela, and of Austrodiplostomum mordax from Argentina. J Parasitol 103(5):497–505.  https://doi.org/10.1645/16-128 CrossRefGoogle Scholar
  46. Otachi EO, Locke SA, Jirsa F, Fellner-Frank C, Marcogliese DJ (2014) Morphometric and molecular analyses of Tylodelphys sp. metacercariae (Digenea: Diplostomidae) from the vitreous humour of four fish species from Lake Naivasha, Kenya. J Helminthol 89:404–414.  https://doi.org/10.1017/s0022149x14000170 CrossRefGoogle Scholar
  47. Pérez-Ponce de León G, Nadler SA (2010) What we don’t recognize can hurt us: a plea for awareness about cryptic species. J Parasitol 96:453–464.  https://doi.org/10.1645/ge-2260.1 CrossRefGoogle Scholar
  48. Posada D (2008) jModelTest: phylogenetic model averaging. Mol Biol Evol 25:1253–1256.  https://doi.org/10.1093/molbev/msn083 CrossRefGoogle Scholar
  49. Presswell B, Blasco-Costa I (2019) Description of Tylodelphys darbyi n. sp. (Trematoda: Diplostomidae) from the threatened Australasian crested grebe (Podiceps cristatus australis, Gould 1844) and linking of its life-cycle stages. J Helminthol:1–8.  https://doi.org/10.1017/S0022149X19000142
  50. Rambaut A (2012) FigTree v1.4.2, a graphical viewer of phylogenetic trees. Available from http://tree.bio.ed.ac.uk/software/figtree/
  51. Ronquisti F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574.  https://doi.org/10.1093/bioinformatics/btg180 CrossRefGoogle Scholar
  52. Sandland GJ, Goater CP (2001) Parasite-induced variation inhost morphology: brain encysting trematodes in fathead minnows. J Parasitol 87:267–272.  https://doi.org/10.2307/3285040 CrossRefGoogle Scholar
  53. Sereno-Uribe AL, Gómez LA, Ostrowski de Núñez M, Pérez-Ponce de León G, Martín García-Varela M (2019) Assessing the taxonomic validity of Austrodiplostomum spp. (Digenea: Diplostomidae) through nuclear and mitocondrial data. J Parasitol, in pressGoogle Scholar
  54. Sereno-Uribe AL, López-Jimenez A, Andrade-Gómez L, García-Varela M (2018) A morphological and molecular study of adults and metacercariae of Hysteromorpha triloba (Rudolphi, 1819), Lutz 1931 (Diplostomidae) from the Neotropical region. J Helminthol 1(9).  https://doi.org/10.1017/s0022149x17001237
  55. Shariff M, Richards RH, Sommerville C (1980) The histopathology of acute and chronic infections of rainbow trout Salmo gairdneri Richardson with eye flukes, Diplostomum ssp. J Fish Dis 3:455–465.  https://doi.org/10.1111/j.1365-2761.1980.tb00432.x CrossRefGoogle Scholar
  56. Soldánová M, Gerogieva S, Rohácová J, Knudsen R, Kuhn A, Henriksen EH, Siwertsson A, Shaw JC, Kuris AM, Amundsen PA, Kevin TS, Lafferty KD, Kostandinova A (2017) Molecular analyses reveal high species diversity of trematodes in a sub-Arctic lake. Int J Parasitol 47:327–345.  https://doi.org/10.1016/j.ijpara.2016.12.008 CrossRefGoogle Scholar
  57. Szidat L (1969) Structure development and behaviour of new strigeatoid metacercariae from subtropical fishes of South America. J Fish Res Board Can 26:753–786.  https://doi.org/10.1139/f69-074 CrossRefGoogle Scholar
  58. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729.  https://doi.org/10.1093/molbev/mst197 CrossRefGoogle Scholar
  59. Travassos L, Freitas JFT, Kohn A (1969) Trematódeos do Brasil. Mem Inst Oswaldo Cruz 67:1–886Google Scholar
  60. Ubels JL, DeJong RJ, Hoolsema B, Wurzberger A, Nguyen T-T, Blankespoor HD, Blankespoor CL (2018) Impairment of retinal function in yellow perch (Perca flavescens) by Diplostomum baeri metacercariae. Int J Parasitol Parasites Wildl 7(2):171–179.  https://doi.org/10.1016/j.ijppaw.2018.05.001 CrossRefGoogle Scholar
  61. Vilas R, Criscione CD, Blouin MS (2005) A comparison between mitochondrial DNA and ribosomal internal transcribed regions in prospecting for cryptic species of platyhelminth parasites. Parasitology 131:839–846.  https://doi.org/10.1017/s0031182005008437 CrossRefGoogle Scholar
  62. Vital JF, Murrieta-Morey GA, Pereira NB, Malta JCO (2016) Metacercárias de Austrodiplostomum compactum (Lutz, 1928) em peixes de lagos de várzea da Amazônia Brasileira. Folia Amazónica 25:153–158.  https://doi.org/10.24841/fa.v25i2.399 CrossRefGoogle Scholar
  63. Xia X (2013) DAMBE5: a comprehensive software package for data analysis in molecular biology and evolution. Mol Biol Evol 30:1720–1728.  https://doi.org/10.1093/molbev/mst064 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Larissa Sbeghen Pelegrini
    • 1
  • Thayana Gião
    • 2
  • Diego Henrique Mirandola Dias Vieira
    • 1
  • Maria Isabel Müller
    • 1
    • 3
  • Reinaldo José da Silva
    • 1
  • Gerardo Pérez-Ponce de León
    • 4
  • Rodney Kozlowiski de Azevedo
    • 5
  • Vanessa Doro Abdallah
    • 5
    Email author
  1. 1.Instituto de Biociências de BotucatuUniversidade Estadual Paulista (UNESP)BotucatuBrazil
  2. 2.Pró-reitoria de Pesquisa e Pós-graduação, Laboratório de Ictioparasitologia, Rua Irmã ArmindaUniversidade do Sagrado Coração (USC)BauruBrazil
  3. 3.Departamento de Ciências BiológicasUniversidade Federal de São Paulo (UNIFESP)DiademaBrazil
  4. 4.Instituto de BiologiaUniversidad Nacional Autónoma de México (UNAM)Mexico CityMexico
  5. 5.Programa de Pós-Graduação em Análise de Sistemas AmbientaisCentro Universitário CESMACMaceióBrazil

Personalised recommendations