Comparison of PCR assays to detect Toxoplasma gondii oocysts in green-lipped mussels (Perna canaliculus)

  • Alicia CoupeEmail author
  • Laryssa Howe
  • Karen Shapiro
  • Wendi D. Roe
Protozoology - Original Paper


Toxoplasma gondii is recognised as an important pathogen in the marine environment, with oocysts carried to coastal waters in overland runoff. Currently, there are no standardised methods to detect T. gondii directly in seawater to assess the extent of marine ecosystem contamination, but filter-feeding shellfish may serve as biosentinels. A variety of PCR-based methods have been used to confirm presence of T. gondii DNA in marine shellfish; however, systematic investigations comparing molecular methods are scarce. The primary objective of this study was to evaluate analytical sensitivity and specificity of two nested-PCR (nPCR) assays targeting dhps and B1 genes and two real-time (qPCR) assays targeting the B1 gene and a 529-bp repetitive element (rep529), for detection of T. gondii. These assays were subsequently validated for T. gondii detection in green-lipped mussel (Perna canaliculus) haemolymph using oocyst spiking experiments. All assays could reliably detect 50 oocysts spiked into mussel haemolymph. The lowest limit of detection was 5 oocysts using qPCR assays, with the rep529 primers performing best, with good correlation between oocyst concentrations and Cq values, and acceptable efficiency. Assay specificity was evaluated by testing DNA from closely related protozoans, Hammondia hammondi, Neospora caninum, and Sarcocystis spp. Both nPCR assays were specific to T. gondii. Both qPCR assays cross-reacted with Sarcocystis spp. DNA, and the rep529 primers also cross-reacted with N. caninum DNA. These studies suggest that the rep529 qPCR assay may be preferable for future mussel studies, but direct sequencing is required for definitive confirmation of T. gondii DNA detection.


Toxoplasma gondii Polymerase chain reaction rep529 repetitive element, B1 gene, dhps gene Perna canaliculus green-lipped mussel 



We thank Heather Fritz, Jeroen Saeij, and David Arranz Solis for producing and generously providing T. gondii oocysts from the University of California, Davis. We are very grateful to Patricia Conrad, University California, Davis, for supporting collaboration with Massey University.

Funding information

Funding for this work was provided by the New Zealand Department of Conservation, the Massey University Research Foundation, the Lewis Fitch Foundation, and the McGeorge Foundation. Financial support was also received from the IVABS Doctoral Scholarship, Massey University, and the New Zealand International Doctoral Research Scholarship, Education New Zealand.

Compliance with ethical standards

Conflict of interest

The authors declare that there is no conflict of interest.


  1. Aksoy U, Marangi M, Papini R, Ozkoc S, Bayram Delibas S, Giangaspero A (2014) Detection of Toxoplasma gondii and Cyclospora cayetanensis in Mytilus galloprovincialis from Izmir Province coast (Turkey) by real time PCR/high-resolution melting analysis (HRM). Food Microbiol 44:128–135. CrossRefGoogle Scholar
  2. Arkush KD, Miller MA, Leutenegger CM, Gardner IA, Packham AE, Heckeroth AR, Tenter AM, Barr BC, Conrad PA (2003) Molecular and bioassay-based detection of Toxoplasma gondii oocyst uptake by mussels (Mytilus galloprovincialis). Int J Parasitol 33:1087–1097. CrossRefGoogle Scholar
  3. Aspinall TV, Marlee D, Hyde JE, Sims PFG (2002) Prevalence of Toxoplasma gondii in commercial meat products as monitored by polymerase chain reaction–food for thought? Int J Parasitol 32:1193–1199CrossRefGoogle Scholar
  4. Bahia-Oliveira L, Gomez-Marin J, and Shapiro K (2017) Toxoplasma gondii. In: J.B. Rose and B. Jiménez-Cisneros, (eds) Global Water Pathogen Project. (R. Fayer and W. Jakubowski, (eds) Part 3 Protists) Michigan State University, E. Lansing, UNESCO
  5. Bastien P, Procop GW, Reischl U (2008) Quantitative real-time PCR is not more sensitive than “conventional” PCR. J Clin Microbiol 46:1897–1900CrossRefGoogle Scholar
  6. Batz MB, Hoffmann S, Morris JG (2012) Ranking the disease burden of 14 pathogens in food sources in the United States using attribution data from outbreak investigations and expert elicitation. J Food Prot 75:1278–1291. CrossRefGoogle Scholar
  7. Bowie WR, King AS, Werker DH, Isaac-Renton JL, Bell A, Eng SB, Marion SA (1997) Outbreak of toxoplasmosis associated with municipal drinking water for the BC Toxoplasma Investigation Team*. Lancet 350:173–177. CrossRefGoogle Scholar
  8. Burg JL, Grover CM, Pouletty P, Boothroyd JC (1989) Direct and sensitive detection of a pathogenic direct and sensitive detection of a pathogenic protozoan, Toxoplasma gondii, by polymerase chain reaction. J Clin Microbiol 27:1787–1792Google Scholar
  9. Cong W, Zhang NZ, Hou JL, Wang XC, Ma JG, Zhu XQ, Chen GJ (2017) First detection and genetic characterization of Toxoplasma gondii in market-sold oysters in China. Infect Genet Evol 54:276–278. CrossRefGoogle Scholar
  10. Conrad PA, Miller MA, Kreuder C, James ER, Mazet J, Dabritz H, Jessup DA, Gulland F, Grigg ME (2005) Transmission of Toxoplasma: clues from the study of sea otters as sentinels of Toxoplasma gondii flow into the marine environment. Int J Parasitol 35:1155–1168. CrossRefGoogle Scholar
  11. Costa JM, Bretagne S (2012) Variation of B1 gene and AF146527 repeat element copy numbers according to Toxoplasma gondii strains assessed using real-time quantitative PCR. J Clin Microbiol 50:1452–1454. CrossRefGoogle Scholar
  12. Coupe A, Howe L, Burrows E, Sine A, Pita A, Velathanthiri N, Vallée E, Hayman D, Shapiro K, Roe WD (2018) First report of Toxoplasma gondii sporulated oocysts and Giardia duodenalis in commercial green-lipped mussels (Perna canaliculus) in New Zealand. Parasitol Res 117:1453–1463. CrossRefGoogle Scholar
  13. De Moura L, Garcia Bahia-Oliveira LM, Wada MY et al (2006) Waterborne toxoplasmosis, Brazil, from field to gene. Emerg Infect Dis 12:326–329. CrossRefGoogle Scholar
  14. Dubey JP, Lindsay DS, Speer CA (1998) Structure of Toxoplasma gondii tachyzoites, bradyzoites, and sporozoites and biology and development of tissue cysts. Clin Microbiol Rev 11:267–299CrossRefGoogle Scholar
  15. Dubey JP (2004) Toxoplasmosis - a waterborne zoonosis. Vet Parasitol 126:57–72. CrossRefGoogle Scholar
  16. Dubey JP (1998) Toxoplasma gondii oocyst survival under defined temperatures. J Parasitol 84:862–865CrossRefGoogle Scholar
  17. Dubey JP (2016) Toxoplasmosis of animals and humans. CRC press, Boca Raton, Florida, USA,Google Scholar
  18. Dubey JP, Frenkel JK (1972) Cyst-induced toxoplasmosis in cats. J Protozool 19:155–177CrossRefGoogle Scholar
  19. Dubey JP, Zarnke R, Thomas NJ, Wong SK, Bonn WV, Briggs M, Davis JW, Ewing R, Mense M, Kwok OCH, Romand S, Thulliez P (2003) Toxoplasma gondii, Neospora caninum, Sarcocystis neurona, and Sarcocystis canis-like infections in marine mammals. Vet Parasitol 116:275–296. CrossRefGoogle Scholar
  20. Edvinsson B, Lappalainen M, Evengård B et al (2006) Real-time PCR targeting a 529-bp repeat element for diagnosis of toxoplasmosis. Clin Microbiol Infect 12:131–136. CrossRefGoogle Scholar
  21. Esmerini PO, Gennari SM, Pena HFJ (2010) Analysis of marine bivalve shellfish from the fish market in Santos city, São Paulo state, Brazil, for Toxoplasma gondii. Vet Parasitol 170:8–13. CrossRefGoogle Scholar
  22. Frenkel JK, Ruiz A, Chinchilla M (1975) Soil survival of toxoplasma oocysts in Kansas and Costa Rica*. Am J Trop Med Hyg 24:439–443. CrossRefGoogle Scholar
  23. Ghozzi K, Marangi M, Papini R, Lahmar I, Challouf R, Houas N, Ben Dhiab R, Normanno G, Babba H, Giangaspero A (2017) First report of Tunisian coastal water contamination by protozoan parasites using mollusk bivalves as biological indicators. Mar Pollut Bull 117:197–202. CrossRefGoogle Scholar
  24. Grigg ME, Boothroyd JC (2001) Rapid identification of virulent type I strains of the protozoan pathogen toxoplasma gondii by PCR-restriction fragment length polymorphism analysis at the B1 gene. J Clin Microbiol 39:398–400. CrossRefGoogle Scholar
  25. Hartley WJ, Bridge PS (1975) A case of suspected congenital Toxoplasma encephalomyelitis in a lamb associated with a spinal cord anomaly. Br Vet J 131:380–384CrossRefGoogle Scholar
  26. Hohweyer J, Dumètre A, Aubert D et al (2013) Tools and methods for detecting and characterizing giardia, cryptosporidium, and toxoplasma parasites in marine mollusks. J Food Protection 76:1649–1657. CrossRefGoogle Scholar
  27. Holland GN (2003) Ocular toxoplasmosis: a global reassessment. Part I: epidemiology and course of disease. Am J Ophthalmol 136:973–988CrossRefGoogle Scholar
  28. Homan WL, Vercammen M, De Braekeleer J, Verschueren H (2000) Identification of a 200-to 300-fold repetitive 529 bp DNA fragment in Toxoplasma gondii, and its use for diagnostic and quantitative PCR1. Int J Parasitol 30:69–75CrossRefGoogle Scholar
  29. Howe L, Hunter S, Burrows E, Roe W (2014) Four cases of fatal toxoplasmosis in three species of endemic New Zealand birds. Avian Dis 58:171–175. CrossRefGoogle Scholar
  30. Jiang J, Alderisio KA, Singh A, Xiao L (2005) Development of procedures for direct extraction of Cryptosporidium DNA from water concentrates and for relief of PCR inhibitors. Appl Environ Microbiol 71:1135–1141CrossRefGoogle Scholar
  31. Jones JL, Dubey JP (2010) Experimental parasitology waterborne toxoplasmosis – recent developments. Exp Parasitol 124:10–25. CrossRefGoogle Scholar
  32. Kasper DC, Sadeghi K, Prusa AR, Reischer GH, Kratochwill K, Förster-Waldl E, Gerstl N, Hayde M, Pollak A, Herkner KR (2009) Quantitative real-time polymerase chain reaction for the accurate detection of Toxoplasma gondii in amniotic fluid. Diagn Microbiol Infect Dis 63:10–15. CrossRefGoogle Scholar
  33. Kerambrun E, Palos Ladeiro M, Bigot-Clivot A, Dedourge-Geffard O, Dupuis E, Villena I, Aubert D, Geffard A (2016) Zebra mussel as a new tool to show evidence of freshwater contamination by waterborne Toxoplasma gondii. J Appl Microbiol 120:498–508. CrossRefGoogle Scholar
  34. Kreuder C, Miller MA, Jessup DA, Lowenstine LJ, Harris MD, Ames JA, Carpenter TE, Conrad PA, Mazet JAK (2003) Patterns of mortality in Southern Sea otters (Enhydra lutris nereis) from 1998–2001. J Wildl Dis 39:495–509. CrossRefGoogle Scholar
  35. Lindsay DS, Collins MV, Mitchell SM, Cole RA, Flick GJ, Wetch CN, Lindquist A, Dubey JP (2003) Sporulation and survival of toxoplasma gondii oocysts in seawater. J Eukaryot Microbiol 50:687–688. CrossRefGoogle Scholar
  36. Lindsay DS, Collins MV, Mitchell SM, Wetch CN, Rosypal AC, Flick GJ, Zajac AM, Lindquist A, Dubey JP (2004) Survival of Toxoplasma gondii oocysts in Eastern oysters (Crassostrea virginica). J Parasitol 90:1054–1057CrossRefGoogle Scholar
  37. Lindsay DS, Dubey JP (2009) Long-term survival of toxoplasma gondii sporulated oocysts in seawater. J Parasitol 95:1019–1020. CrossRefGoogle Scholar
  38. Marangi M, Giangaspero A, Lacasella V, Lonigro A, Gasser RB (2015) Multiplex PCR for the detection and quantification of zoonotic taxa of Giardia, Cryptosporidium and Toxoplasma in wastewater and mussels. Mol Cell Probes 29:122–125. CrossRefGoogle Scholar
  39. Marquis ND, Record NR, Fernández Robledo JA (2015) Survey for protozoan parasites in Eastern oysters (Crassostrea virginica) from the Gulf of Maine using PCR-based assays. Parasitol Int 64:299–302. CrossRefGoogle Scholar
  40. McLeod R, Van Tubbergen C, Montoya JG, Petersen E (2014) Chapter 4 Human Toxoplasma Infection, Second Edi, Elsevier.
  41. Mead PS, Slutsker L, Dietz V, McCaig LF, Bresee JS, Shapiro C, Griffin PM, Tauxe RV (1999) Food-related illness and death in the United States. Emerg Infect Dis 5:607–625CrossRefGoogle Scholar
  42. Michaels L, Rejmanek D, Aguilar B et al (2016) California mussels (Mytilus californianus) as sentinels for marine contamination with Sarcocystis neurona. Parasitology 143:762–769. CrossRefGoogle Scholar
  43. Miller M a, Gardner I a, Kreuder C, et al (2002) Coastal freshwater runoff is a risk factor for Toxoplasma gondii infection of southern sea otters (Enhydra lutris nereis). Int J Parasitol 32:997–1006. doi:
  44. Miller MA, Conrad PA, Harris M, Hatfield B, Langlois G, Jessup DA, Magargal SL, Packham AE, Toy-Choutka S, Melli AC, Murray MA, Gulland FM, Grigg ME (2010) A protozoal-associated epizootic impacting marine wildlife: mass-mortality of southern sea otters (Enhydra lutris nereis) due to Sarcocystis neurona infection. Vet Parasitol 172:183–194. CrossRefGoogle Scholar
  45. Miller MA, Miller WA, Conrad PA et al (2008) Type X Toxoplasma gondii in a wild mussel and terrestrial carnivores from coastal California: new linkages between terrestrial mammals, runoff and toxoplasmosis of sea otters. Int J Parasitol 38:1319–1328. CrossRefGoogle Scholar
  46. Okeoma CM, Williamson NB, Pomroy WE, Stowell KM, Gillespie LM (2004) Isolation and molecular characterisation of Neospora caninum in cattle in New Zealand. N Z Vet J 52(6):364–370CrossRefGoogle Scholar
  47. Palos Ladeiro M, Aubert D, Villena I, Geffard A, Bigot A (2014) Bioaccumulation of human waterborne protozoa by zebra mussel (Dreissena polymorpha): interest for water biomonitoring. Water Res 48:148–155. CrossRefGoogle Scholar
  48. Palos Ladeiro M, Bigot-Clivot A, Aubert D, Villena I, Geffard A (2015) Assessment of Toxoplasma gondii levels in zebra mussel (Dreissena polymorpha) by real-time PCR: an organotropism study. Environ Sci Pollut Res 22:13693–13701. CrossRefGoogle Scholar
  49. Pashley TV, Volpe F, Pudney M, Hyde JE, Sims PFG, Delves CJ (1997) Isolation and molecular characterization of the bifunctional hydroxymethyldihydropterin pyrophosphokinase-dihydropteroate synthase gene from Toxoplasma gondii. Mol Biochem Parasitol 86:37–47. Google Scholar
  50. Patel KK (2016) Epidemiological investigation into abortion in farmed red deer in New Zealand. PhD ThesisGoogle Scholar
  51. Pereira-Chioccola VL, Vidal JE, Su C (2009) Toxoplasma gondii infection and cerebral toxoplasmosis in HIV-infected patients. Future Microbiol 4:1363–1379CrossRefGoogle Scholar
  52. Putignani L, Mancinelli L, Del CF et al (2011) Investigation of Toxoplasma gondii presence in farmed shellfish by nested-PCR and real-time PCR fluorescent amplicon generation assay (FLAG). Exp Parasitol 127:409–417. CrossRefGoogle Scholar
  53. Reischl U, Bretagne S, Krüger D, Ernault P, Costa JM (2003) Comparison of two DNA targets for the diagnosis of toxoplasmosis by real-time PCR using fluorescence resonance energy transfer hybridization probes. BMC Infect Dis 3(7)Google Scholar
  54. Ribeiro LA, Santos LKNSS, Brito PA et al (2015) Detection of toxoplasma gondii DNA in Brazilian oysters (Crassostrea rhizophorae). Genet Mol Res 14:4658–4665. CrossRefGoogle Scholar
  55. Roe WD, Howe L, Baker EJ, Burrows L, Hunter SA (2013) An atypical genotype of Toxoplasma gondii as a cause of mortality in Hector’s dolphins (Cephalorhynchus hectori). Vet Parasitol 192:67–74. CrossRefGoogle Scholar
  56. Roe WD, Michael S, Fyfe J, Burrows E, Hunter SA, Howe L (2017) First report of systemic toxoplasmosis in a New Zealand sea lion (Phocarctos hookeri). N Z Vet J 65:46–50. CrossRefGoogle Scholar
  57. Schrader C, Schielke A, Ellerbroek L, Johne R (2012) PCR inhibitors - occurrence, properties and removal. J Appl Microbiol 113:1014–1026. CrossRefGoogle Scholar
  58. Schwab KJ, Neill FH, Estes MK et al (1998) Distribution of Norwalk virus within shellfish following bioaccumulation and subsequent depuration by detection using RT-PCR. J Food Prot 61:1674–1680. CrossRefGoogle Scholar
  59. Shapiro K, Mazet JAK, Schriewer A, Wuertz S, Fritz H, Miller WA, Largier J, Conrad PA (2010) Detection of Toxoplasma gondii oocysts and surrogate microspheres in water using ultrafiltration and capsule filtration. Water Res 44:893–903. CrossRefGoogle Scholar
  60. Shapiro K, Vanwormer E, Aguilar B, Conrad PA (2015) Surveillance for Toxoplasma gondii in California mussels (Mytilus californianus) reveals transmission of atypical genotypes from land to sea. Environ Microbiol 17:4177–4188. CrossRefGoogle Scholar
  61. Shapiro K, Bahia-Oliveira L, Dixon B., Dumètre A, de Wit LA, VanWormer E, Villena I (2019) Environmental transmission of Toxoplasma gondii: Oocysts in water, soil and food. Food and Waterborne Parasitology, e00049.Google Scholar
  62. Staggs SE, Keely SP, Ware MW, Schable N, See MJ, Gregorio D, Zou X, Su C, Dubey JP, Villegas EN (2015) The development and implementation of a method using blue mussels (Mytilus spp.) as biosentinels of Cryptosporidium spp. and Toxoplasma gondii contamination in marine aquatic. environments. 114:4655–4667Google Scholar
  63. Sterkers Y, Varlet-Marie E, Cassaing S, Brenier-Pinchart MP, Brun S, Dalle F, Delhaes L, Filisetti D, Pelloux H, Yera H, Bastien P (2010) Multicentric comparative analytical performance study for molecular detection of low amounts of Toxoplasma gondii from simulated specimens. J Clin Microbiol 48:3216–3222. CrossRefGoogle Scholar
  64. Su C, Shwab EK, Zhou P et al (2010) Moving towards an integrated approach to molecular detection and identification of Toxoplasma gondii. Parasitology 137:1–11CrossRefGoogle Scholar
  65. Tenter AM, Heckeroth AR, Weiss LM (2000) Toxoplasma gondii: from animals to humans. Int J Parasitol 30:1217–1258CrossRefGoogle Scholar
  66. VanWormer E, Miller MA, Conrad PA, Grigg ME, Rejmanek D, Carpenter TE, Mazet JAK (2014) Using molecular epidemiology to track Toxoplasma gondii from terrestrial carnivores to marine hosts: implications for public health and conservation. PLoS Negl Trop Dis 8:e2852CrossRefGoogle Scholar
  67. Verant ML, d’Ozouville N, Parker PG, Shapiro K, VanWormer E, Deem SL (2014) Attempted detection of Toxoplasma gondii oocysts in environmental waters using a simple approach to evaluate the potential for waterborne transmission in the Galápagos Islands, Ecuador. Ecohealth 11(2):207–214CrossRefGoogle Scholar
  68. Wells B, Shaw H, Innocent G, Guido S, Hotchkiss E, Parigi M, Opsteegh M, Green J, Gillespie S, Innes EA, Katzer F (2015) Molecular detection of Toxoplasma gondii in water samples from Scotland and a comparison between the 529bp real-time PCR and ITS1 nested PCR. Water Res 87:175–181. CrossRefGoogle Scholar
  69. Wilking H, Thamm M, Stark K, Aebischer T, Seeber F (2016) Prevalence, incidence estimations, and risk factors of Toxoplasma gondii infection in Germany: a representative, cross-sectional, serological study. Sci Rep 6:1–9. CrossRefGoogle Scholar
  70. Yang W, Lindquist HDA, Cama V, Schaefer FW, Villegas E, Fayer R, Lewis EJ, Feng Y, Xiao L (2009) Detection of Toxoplasma gondii oocysts in water sample concentrates by real-time PCR. Appl Environ Microbiol 75:3477–3483. CrossRefGoogle Scholar
  71. Zhang M, Yang Z, Wang S, Tao LF, Xu LX, Yan RF, Song XK, Li XR (2014) Detection of Toxoplasma gondii in shellfish and fish in parts of China. Vet Parasitol 200:85–89. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute of Veterinary, Animal and Biomedical Sciences, College of SciencesMassey UniversityPalmerston NorthNew Zealand
  2. 2.EpiCentre, Wool Building, University AvenueMassey University Manawatū CampusPalmerston NorthNew Zealand
  3. 3.One Health Institute and School of Veterinary MedicineUniversity of CaliforniaDavisUSA
  4. 4.Department of Pathology, Microbiology and Immunology, School of Veterinary MedicineUniversity of CaliforniaDavisUSA

Personalised recommendations