Advertisement

Trypanosoma carassii infection in goldfish (Carassius auratus L.): changes in the expression of erythropoiesis and anemia regulatory genes

  • Mark McAllister
  • Nicole Phillips
  • Miodrag BelosevicEmail author
Fish Parasitology - Original Paper

Abstract

Trypanosoma carassii is a flagellated bloodstream parasite of cyprinid fish with pathogenesis manifesting primarily as anemia in experimentally infected fish. This anemia is characterized by decreases in the number of circulating red blood cells (RBCs) during peak parasitemia. We examined changes in the key blood metrics and expression of genes known to be important in the regulation of erythropoiesis. Increasing parasitemia was strongly correlated with an overall decrease in the total number of circulating RBCs. Gene expression of key erythropoiesis regulators (EPO, EPOR, GATA1, Lmo2, and HIFα) and proinflammatory cytokines (IFNγ and TNFα) were measured and their expressions differed from those in fish made anemic by injections of phenylhydrazine (PHZ). Significant upregulation of pro-erythropoietic genes was observed in PHZ-induced anemia, but not during peak parasitic infection. Previously, we reported on functional characterization of goldfish erythropoietin (rgEPO) and its ability to induce survival and differentiation of erythroid progenitor cells in vitro. Treatment of goldfish during the infection with rgEPO reduced the severity of anemia but failed to fully prevent the onset of the anemic state in infected fish. Proinflammatory cytokines have been implicated in the suppression of erythropoiesis during trypanosomiasis, specifically the cytokines TNFα, IFNγ, and IL-1β. Analysis of key proinflammatory cytokines revealed that mRNA levels of IFNγ and TNFα were upregulated in response to infection, but only TNFα increased in response to PHZ treatment. Synergistic activity of the proinflammatory cytokines may be required to sustain prolonged anemia. These findings provide insight into the relationship between T. carassii and host anemia and suggest that T. carassii may directly or indirectly suppress host erythropoiesis.

Keywords

Erythropoietin EPO Trypanosome Anemia Gene expression Packed cell volume PCV Proinflammatory 

Notes

Supplementary material

436_2019_6246_MOESM1_ESM.docx (5 mb)
ESM 1 (DOCX 5122 kb)

References

  1. Agüero F, Campo V, Cremona L, Jäger A, Noia JMD, Overath P, Sánchez DO, Frasch AC (2002) Gene discovery in the freshwater fish parasite Trypanosoma carassii: identification of trans-Sialidase-like and mucin-like genes. Infect Immun 70:7140–7144.  https://doi.org/10.1128/IAI.70.12.7140-7144.2002 CrossRefGoogle Scholar
  2. Andrews NW (1990) The acid-active hemolysin of Trypanosoma cruzi. Exp Parasitol 71:241–244CrossRefGoogle Scholar
  3. Andrews NW, Whitlow MB (1989) Secretion by Trypanosoma cruzi of a hemolysin active at low pH. Mol Biochem Parasitol 33:249–256.  https://doi.org/10.1016/0166-6851(89)90086-8 CrossRefGoogle Scholar
  4. Berger J (2007) Phenylhydrazine haematotoxicity. J Appl Biomed Gruyter Open 5:125–130Google Scholar
  5. Bezie M (2014) African trypanosomes: virulence factors, pathogenicity and host responses. J Vet Adv 4:732–745CrossRefGoogle Scholar
  6. Bienek DR, Belosevic M (1999) Macrophage or fibroblast-conditioned medium potentiates growth of Trypanosoma danilewskyi Laveran & Mesnil 1904. J Fish Dis 22:359–367.  https://doi.org/10.1046/j.1365-2761.1999.00184.x CrossRefGoogle Scholar
  7. Bienek DR, Plouffe DA, Wiegertjes GF, Belosevic M (2002) Immunization of goldfish with excretory/secretory molecules of Trypanosoma danilewskyi confers protection against infection. Dev Comp Immunol 26:649–657.  https://doi.org/10.1016/S0145-305X(02)00018-6 CrossRefGoogle Scholar
  8. Brandt SJ, Koury MJ (2009) Regulation of LMO2 mRNA and protein expression in erythroid differentiation. Haematologica 94:447–448.  https://doi.org/10.3324/haematol.2008.005140 CrossRefGoogle Scholar
  9. Chamond N, Cosson A, Blom-Potar MC, Jouvion G, D’Archivio S, Medina M, Droin-Bergère S, Huerre M, Goyard S, Minoprio P (2010) Trypanosoma vivax infections: pushing ahead with mouse models for the study of Nagana. I. Parasitological, hematological and pathological parameters. PLoS Negl Trop Dis 4:e792.  https://doi.org/10.1371/journal.pntd.0000792 CrossRefGoogle Scholar
  10. Chang K-H, Tam M, Stevenson MM (2004) Modulation of the course and outcome of blood-stage malaria by erythropoietin-induced reticulocytosis. J Infect Dis 189:735–743CrossRefGoogle Scholar
  11. Chou C-F, Tohari S, Brenner S, Venkatesh B (2004) Erythropoietin gene from a teleost fish, Fugu rubripes. Blood 104:1498–1503.  https://doi.org/10.1182/blood-2003-10-3404 CrossRefGoogle Scholar
  12. Chu C-Y, Cheng C-H, Chen G-D, Chen Y-C, Hung C-C, Huang K-Y, Huang C-J (2007) The zebrafish erythropoietin: functional identification and biochemical characterization. FEBS Lett 581:4265–4271.  https://doi.org/10.1016/j.febslet.2007.07.073 CrossRefGoogle Scholar
  13. Chu C-Y, Cheng C-H, Yang C-H, Huang C-J (2008) Erythropoietins from teleosts. Cell Mol Life Sci 65:3545–3552.  https://doi.org/10.1007/s00018-008-8231-y CrossRefGoogle Scholar
  14. Cooper AC, Mikhail A, Lethbridge MW, Kemeny DM, Macdougall IC (2003) Increased expression of erythropoiesis inhibiting cytokines (IFN-γ, TNF-α, IL-10, and IL-13) by T cells in patients exhibiting a poor response to erythropoietin therapy. J Am Soc Nephrol 14:1776–1784.  https://doi.org/10.1097/01.ASN.0000071514.36428.61 CrossRefGoogle Scholar
  15. Corrêa LL, Oliveira MSB, Tavares-Dias M, Ceccarelli PS, Corrêa LL, Oliveira MSB, Tavares-Dias M, Ceccarelli PS (2016) Infections of Hypostomus spp. by Trypanosoma spp. and leeches: a study of hematology and record of these hirudineans as potential vectors of these hemoflagellates. Rev Bras Parasitol Vet 25:299–305.  https://doi.org/10.1590/S1984-29612016049 CrossRefGoogle Scholar
  16. Dyková I, Lom J (1979) Histopathological changes in Trypanosoma danilewskyi Laveran & Mesnil, 1904 and Trypanoplasma borelli Laveran & Mesnil, 1902 infections of goldfish, Carassiw auratus (L.). J Fish Dis 2:381–390.  https://doi.org/10.1111/j.1365-2761.1979.tb00390.x CrossRefGoogle Scholar
  17. Eckardt K-U, Kurtz A (2005) Regulation of erythropoietin production. Eur J Clin Investig 35:13–19.  https://doi.org/10.1111/j.1365-2362.2005.01525.x CrossRefGoogle Scholar
  18. Elliott S, Pham E, Macdougall IC (2008) Erythropoietins: a common mechanism of action. Exp Hematol 36:1573–1584.  https://doi.org/10.1016/j.exphem.2008.08.003 CrossRefGoogle Scholar
  19. Galloway JL, Wingert RA, Thisse C, Thisse B, Zon LI (2005) Loss of gata1 but not gata2 converts erythropoiesis to myelopoiesis in zebrafish embryos. Dev Cell 8:109–116.  https://doi.org/10.1016/j.devcel.2004.12.001 CrossRefGoogle Scholar
  20. Ghosh A, Halpern ME (2016) Chapter 10 - transcriptional regulation using the Q system in transgenic zebrafish. In: William Detrich H, Westerfield M, Zon LI (eds) Methods in cell biology, the zebrafish. Academic Press, pp 205–218.  https://doi.org/10.1016/bs.mcb.2016.05.001
  21. Groff JM, Zinkl JG (1999) Hematology and clinical chemistry of cyprinid fish: common carp and goldfish. Vet Clin North Am Exot Anim Pract, Clin Pathol Sample Collection 2:741–776.  https://doi.org/10.1016/S1094-9194(17)30120-2 CrossRefGoogle Scholar
  22. Habila N, Inuwa MH, Aimola IA, Udeh MU, Haruna E (2012) Pathogenic mechanisms of Trypanosoma evansi infections. Res Vet Sci 93:13–17.  https://doi.org/10.1016/j.rvsc.2011.08.011 CrossRefGoogle Scholar
  23. Hayes PM, Lawton SP, Smit NJ, Gibson WC, Davies AJ (2014) Morphological and molecular characterization of a marine fish trypanosome from South Africa, including its development in a leech vector. Parasit Vectors 7:1–11.  https://doi.org/10.1186/1756-3305-7-50 CrossRefGoogle Scholar
  24. Hilali M, Abdel-Gawad A, Nassar A, Abdel-Wahab A (2006) Hematological and biochemical changes in water buffalo calves (Bubalus bubalis) infected with Trypanosoma evansi. Vet Parasitol 139:237–243.  https://doi.org/10.1016/j.vetpar.2006.02.013 CrossRefGoogle Scholar
  25. Hodgkinson JW, Fibke C, Belosevic M (2017) Recombinant IL-4/13A and IL-4/13B induce arginase activity and down-regulate nitric oxide response of primary goldfish (Carassius auratus L.) macrophages. Dev Comp Immunol 67:377–384.  https://doi.org/10.1016/j.dci.2016.08.014 CrossRefGoogle Scholar
  26. Houston AH, Murad A (1992) Erythrodynamics in goldfish, Carassius auratus L.: temperature effects. Physiol Zool 65:55–76CrossRefGoogle Scholar
  27. Houston AH, Murad A (1995) Erythrodynamics in fish: recovery of the goldfish Carassius auratus from acute anemia. Can J Zool 73:411–418.  https://doi.org/10.1139/z95-046 CrossRefGoogle Scholar
  28. Islam AKMN, Woo PTK (1991) Anemia and its mechanism in goldfish Carassius auratus infected with Trypanosoma danilewskyi. Dis Aquat Org 11:37–43CrossRefGoogle Scholar
  29. Jelkmann W (1998) Proinflammatory cytokines lowering erythropoietin production. J Interf Cytokine Res 18:555–559.  https://doi.org/10.1089/jir.1998.18.555 CrossRefGoogle Scholar
  30. Jelkmann W (2004) Molecular biology of erythropoietin. Intern Med 43:649–659.  https://doi.org/10.2169/internalmedicine.43.649 CrossRefGoogle Scholar
  31. Katakura F, Katzenback BA, Belosevic M (2013) Molecular and functional characterization of erythropoietin of the goldfish (Carassius auratus L.). Dev Comp Immunol 40:148–157.  https://doi.org/10.1016/j.dci.2013.02.007 CrossRefGoogle Scholar
  32. Khan RA, Barrett M, Campbell J (1980) Trypanosoma murmanensis: ITS EFFECTS ON THE LONGHORN SCULPIN, Myoxocephalus octodecemspinosus. J Wildl Dis 16:359–361.  https://doi.org/10.7589/0090-3558-16.3.359 CrossRefGoogle Scholar
  33. Krasnov A, Timmerhouse G, Afanasyev S, Takle H, Jorgensen SM (2013) Induced erythropoiesis during acute anemia in Atlantic salmon: a transcriptomic study. Gen Comp Edocrinol 192:181–190.  https://doi.org/10.1016/jygcen.2013.04.026
  34. Langousis G, Hill KL (2014) Motility and more: the flagellum of Trypanosoma brucei. Nat Rev Microbiol 12:505–518.  https://doi.org/10.1038/nrmicro3274 CrossRefGoogle Scholar
  35. Latunde-Dada GO, Vulpe CD, Anderson GJ, Simpson RJ, McKie AT (2004) Tissue-specific changes in iron metabolism genes in mice following phenylhydrazine-induced haemolysis. Biochim Biophys Acta (BBA) - Mol Basis Dis 1690:169–176.  https://doi.org/10.1016/j.bbadis.2004.06.011 CrossRefGoogle Scholar
  36. Magez S, Radwanska M, Beschin A, Sekikawa K, Baetselier PD (1999) Tumor necrosis factor alpha is a key mediator in the regulation of experimental Trypanosoma brucei infections. Infect Immun 67:3128–3132Google Scholar
  37. Marsh WA, Rascati KL (1999) Meta-analyses of the effectiveness of erythropoietin for end-stage renal disease and cancer. Clin Ther 21:1443–1455.  https://doi.org/10.1016/S0149-2918(00)80003-X CrossRefGoogle Scholar
  38. Morrison LJ, McLellan S, Sweeney L, Chan CN, MacLeod A, Tait A, Turner CMR (2010) Role for parasite genetic diversity in differential host responses to Trypanosoma brucei infection. Infect Immun 78:1096–1108.  https://doi.org/10.1128/IAI.00943-09 CrossRefGoogle Scholar
  39. Murad A (1990) Haematological response to reduced oxygen-carrying capacity, increased temperature and hypoxia in goldfish, Carassius auratus L. J Fish Biol 36:289–305CrossRefGoogle Scholar
  40. Murad A, Houston AH (1992) Maturation of the goldfish (Carassius auratus) erythrocyte. Comp Biochem Physiol A Physiol 102:107–110.  https://doi.org/10.1016/0300-9629(92)90019-M CrossRefGoogle Scholar
  41. Nairz M, Sonnweber T, Schroll A, Theurl I, Weiss G (2012) The pleiotropic effects of erythropoietin in infection and inflammation. Microbes Infect 14:238–246.  https://doi.org/10.1016/j.micinf.2011.10.005 CrossRefGoogle Scholar
  42. Nishimura K, Nakaya H, Nakagawa H, Matsuo S, Ohnishi Y, Yamasaki S (2011) Effect of Trypanosoma brucei brucei on erythropoiesis in infected rats. J Parasitol 97:88–93.  https://doi.org/10.1645/GE-2522.1 CrossRefGoogle Scholar
  43. Nogawa-Kosaka N, Hirose T, Kosaka N, Aizawa Y, Nagasawa K, Uehara N, Miyazaki H, Komatsu N, Kato T (2010) Structural and biological properties of erythropoietin in Xenopus laevis. Exp Hematol 38:363–372.  https://doi.org/10.1016/j.exphem.2010.02.009 CrossRefGoogle Scholar
  44. Nogawa-Kosaka N, Sugai T, Nagasawa K, Tanizaki Y, Meguro M, Aizawa Y, Maekawa S, Adachi M, Kuroki R, Kato T (2011) Identification of erythroid progenitors induced by erythropoietic activity in Xenopus laevis. J Exp Biol 214:921–927.  https://doi.org/10.1242/jeb.050286 CrossRefGoogle Scholar
  45. Noyes HA, Alimohammadian MH, Agaba M, Brass A, Fuchs H, Gailus-Durner V, Hulme H, Iraqi F, Kemp S, Rathkolb B, Wolf E, de Angelis MH, Roshandel D, Naessens J (2009) Mechanisms controlling anaemia in Trypanosoma congolense infected mice. PLoS One 4:e5170.  https://doi.org/10.1371/journal.pone.0005170 CrossRefGoogle Scholar
  46. Oladiran A, Belosevic M (2012) Immune evasion strategies of trypanosomes: a review. J Parasitol 98:284–292.  https://doi.org/10.1645/GE-2925.1 CrossRefGoogle Scholar
  47. Oladiran A, Beauparlant D, Belosevic M (2011) The expression analysis of inflammatory and antimicrobial genes in the goldfish (Carassius auratus L.) infected with Trypanosoma carassii. Fish Shellfish Immunol 31:606–613.  https://doi.org/10.1016/j.fsi.2011.07.008 CrossRefGoogle Scholar
  48. Overath P, Ruoff J, Stierhof Y-D, Haag J, Tichy H, Dyková I, Lom J (1998) Cultivation of bloodstream forms of Trypanosoma carassii, a common parasite of freshwater fish. Parasitol Res 84:343–347.  https://doi.org/10.1007/s004360050408 CrossRefGoogle Scholar
  49. Paim FC, Duarte MMMF, Costa MM, Da Silva AS, Wolkmer P, Silva CB, Paim CBV, França RT, Mazzanti CMA, Monteiro SG, Krause A, Lopes STA (2011) Cytokines in rats experimentally infected with Trypanosoma evansi. Exp Parasitol 128:365–370.  https://doi.org/10.1016/j.exppara.2011.04.007 CrossRefGoogle Scholar
  50. Qadri SS (1962) An experimental study of the life cycle of Trypanosoma danilewskyi in the leech, Hemiclepsis marginata.*. J Protozool 9:254–258.  https://doi.org/10.1111/j.1550-7408.1962.tb02614.x CrossRefGoogle Scholar
  51. Ransom DG, Haffter P, Odenthal J, Brownlie A, Vogelsang E, Kelsh RN, Brand M, van Eeden FJ, Furutani-Seiki M, Granato M, Hammerschmidt M, Heisenberg CP, Jiang YJ, Kane DA, Mullins MC, Nusslein-Volhard C (1996) Characterization of zebrafish mutants with defects in embryonic hematopoiesis. Development 123:311–319Google Scholar
  52. Simonot DL, Farrell AP (2007) Cardiac remodelling in rainbow trout Oncorhynchus mykiss Walbaum in response to phenylhydrazine-induced anaemia. J Exp Biol 210:2574–2584.  https://doi.org/10.1242/jeb.004028 CrossRefGoogle Scholar
  53. Stijlemans B, Beschin A, Magez S, Ginderachter VAJ, De Baetselier P (2015) Iron homeostasis and Trypanosoma brucei associated immunopathogenicity development: a battle/quest for iron [WWW document]. Biomed Res Int 2015:1–15.  https://doi.org/10.1155/2015/819389 CrossRefGoogle Scholar
  54. Suliman HB, Logan-Henfrey L, Majiwa PA, ole-Moiyoi O, Feldman BF (1999) Analysis of erythropoietin and erythropoietin receptor genes expression in cattle during acute infection with Trypanosoma congolense. Exp Hematol 27:37–45CrossRefGoogle Scholar
  55. Suzuki T, Ueta YY, Inoue N, Xuan X, Saitoh H, Suzuki H (2006) Beneficial effect of erythropoietin administration on murine infection with Trypanosoma congolense. Am J Trop Med Hyg 74:1020–1025.  https://doi.org/10.4269/ajtmh.2006.74.1020 CrossRefGoogle Scholar
  56. Tizard I, Nielsen KH, Seed JR, Hall JE (1978) Biologically active products from African Trypanosomes. Microbiol Rev 42:664–681Google Scholar
  57. Witeska M (2013) Erythrocytes in teleost fishes: a review. Zool Ecol 23:275–281.  https://doi.org/10.1080/21658005.2013.846963 CrossRefGoogle Scholar
  58. Woo PTK, Ardelli BF (2014) Immunity against selected piscine flagellates. Dev Comp Immunol 43:268–279.  https://doi.org/10.1016/j.dci.2013.07.006 CrossRefGoogle Scholar
  59. Xiao B, Chen Y-S, Cheng T (2017) Experimental study on EPO treatment of model rats with infection-induced acute liver injury. J Acute Dis 6:126–130.  https://doi.org/10.12980/jad.6.2017JADWEB-2017-0016 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Biological Sciences, CW-405 Biological Sciences BuildingUniversity of AlbertaEdmontonCanada

Personalised recommendations