Advertisement

Insights into the tracking of the cysteine proteinase B COOH-terminal polypeptide of Leishmania (Leishmania) amazonensis by surface plasmon resonance

  • Raquel Santos-de-Souza
  • Franklin Souza-Silva
  • Barbara Cristina de Albuquerque-Melo
  • Michelle Lopes Ribeiro-Guimarães
  • Luzia Monteiro de Castro Côrtes
  • Bernardo Acácio Santini Pereira
  • Mariana Silva-Almeida
  • Léa Cysne-Finkelstein
  • Francisco Odencio Rodrigues de Oliveira Junior
  • Mirian Claudia de Souza Pereira
  • Carlos Roberto AlvesEmail author
Protozoology - Original Paper

Abstract

Leishmania (Leishmania) amazonensis has adaptive mechanisms to the host environment that are guided by its proteinases, including cysteine proteinase B (CPB), and primarily its COOH-terminal region (Cyspep). This work aimed to track the fate of Cyspep by surface plasmon resonance (SPR) of promastigotes and amastigotes to gain a greater understanding of the adaptation of this parasite in both hosts. This strategy consisted of antibody immobilization on a COOH1 surface, followed by interaction with parasite proteins and epoxysuccinyl-L-leucylamido(4-guanidino)butane (E-64). Pro-CPB and Cyspep were detected using specific polyclonal antibodies against a recombinant Cyspep in both parasite forms. The parasitic supernatants from amastigotes and promastigotes exhibited higher anti-Cyspep recognition compared with that in the subcellular fractions. As the supernatant of the promastigote cultures exhibited resonance unit values indicative of an effective with to E-64, this result was assumed to be Pro-CPB detection. Finally, after using three sequential SPR assay steps, we propose that amastigotes and promastigotes release Cyspep into the extracellular environment, but only promastigotes release this polypeptide as Pro-CPB.

Keywords

Leishmania (L.) amazonensis Cysteine proteinase Trans-epoxysuccinyl-L-leucylamido(4-guanidino)butane Surface plasmon resonance 

Notes

Acknowledgments

We are grateful to the facilities and technical support of the Fundação Oswaldo Cruz Technological Platforms, the Surface Resonance Plasmonic Platform (RPT03E), Real-Time PCR-RJ (RPT09A), Multiuser Research Facility of Flow Cytometry-Parametric Analysis (IOC), and Culture Medium Platform (IOC).

Funding information

This study was financed in part by the Conselho Nacional de Desenvolvimento Científico e Tecnológico—Brasil (CNPq) (509737/2010-2; 401356/2014-0), the Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro—Brasil (FAPERJ) (E-26/102.413/2010; E-26/111.954/2011; E-26/110.592/2012), and the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES)—Finance Code 001. Bernardo A. S. Pereira and Francisco O.R. Oliveira Junior are research fellows of Fiocruz. Carlos R. Alves and Mirian C.S. Pereira are research fellows of the CNPq institution.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interests.

Supplementary material

436_2019_6238_MOESM1_ESM.doc (2.8 mb)
ESM 1 (DOC 2834 kb)

References

  1. Alves CR, Côrte-Real S, De-Freitas RM, Giovanni-De-Simone S (2000) Detection of cysteine-proteinases in Leishmania amazonensis promastigotes using a cross-reactive antiserum. FEMS Microbiol Lett 186:263–267CrossRefGoogle Scholar
  2. Alves CR, Pontes de Carvalho LC, Souza AL, De Simone SG (2001a) A strategy for the identification of T-cell epitopes on Leishmania cysteine proteinases. Cytobios 104:33–41Google Scholar
  3. Alves CR, Figueiredo LJO, Saraiva FALO, De Simone SG (2001b) Molecular modeling study on a Leishmania cysteine proteinase. J Mol Struct THEOCHEM 539:289–295CrossRefGoogle Scholar
  4. Alves CR, Benévolo-De-Andrade TC, Alves JL, Pirmez C (2004) Th1 and Th2 immunological profile induced by cysteine proteinase in murine leishmaniasis. Parasite Immunol 22:127–135CrossRefGoogle Scholar
  5. Alves CR, Corte-Real S, Bourguignon SC, Chaves CS, Saraiva EM (2005) Leishmania amazonensis: early proteinase activities during promastigote-amastigote differentiation in vitro. Exp Parasitol 109:38–48CrossRefGoogle Scholar
  6. Bart G, Coombs GH, Mottram JC (1995) Isolation of lmcpc, a gene encoding a Leishmania mexicana cathepsin-B-like cysteine proteinase. Mol Biochem Parasitol 73:271–274CrossRefGoogle Scholar
  7. Brooks DR, Denise H, Westrop GD, Coombs GH, Mottram JC (2001) The stage-regulated expression of Leishmania mexicana CPB cysteine proteases is mediated by an intercistronic sequence element. J Biol Chem 276:47061–47069CrossRefGoogle Scholar
  8. Da Silveira-Júnior LS, Souza-Silva F, Pereira BA, Cysne-Finkelstein L, Cavalcanti Júnior GB, Alves CR (2017) Exploring the association of surface plasmon resonance with recombinant MHC:Ig hybrid protein as a tool for detecting T lymphocytes in mice infected with Leishmania (Leishmania) amazonensis. Biomed Res Int 2017:9089748CrossRefGoogle Scholar
  9. De Côrtes LMC, De Souza Pereira MC, De OFOJ, Corte-Real S, Da Silva FS, Pereira BA, De Fátima Madeira M, De Moraes MT, Brazil RP, Alves CR (2012) Leishmania (Viannia) braziliensis: insights on subcellular distribution and biochemical properties of heparin-binding proteins. Parasitology 139:200–207CrossRefGoogle Scholar
  10. Deng T, Ge H, He H, Liu Y, Zhai C, Feng L, Yi L (2017) The heterologous expression strategies of antimicrobial peptides in microbial systems. Protein Expr Purif 140:52–59CrossRefGoogle Scholar
  11. Duboise SM, Vannier-Santos MA, Costa-Pinto D, Rivas L, Pan AA, Traub-Cseko Y, De Souza W, McMahon-Pratt D (1994) The biosynthesis, processing, and immunolocalization of Leishmania pifanoi amastigote cysteine proteinases. Mol Biochem Parasitol 68:119–132CrossRefGoogle Scholar
  12. Faye T, Brede DA, Langsrud T, Nes IF, Holo H (2002) An antimicrobial peptide is produced by extracellular processing of a protein from Propionibacterium jensenii. J Bacteriol 184:3649–3656CrossRefGoogle Scholar
  13. Goh SL, Goh LL, Sim TS (2005) Cysteine protease falcipain 1 in Plasmodium falciparum in biochemically distinct from its isozymes. Parasitol Res 97:295–301CrossRefGoogle Scholar
  14. Gomes CB, Silva FS, Charret KD, Pereira BA, Finkelstein LC, Santos-de-Souza R, de Castro Côrtes LM, Pereira MC, Rodrigues de Oliveira FO Jr, Alves CR (2017) Increasing in cysteine proteinase B expression and enzymatic activity during in vitro differentiation of Leishmania (Viannia) braziliensis: first evidence of modulation during morphological transition. Biochimie 133:28–36CrossRefGoogle Scholar
  15. Harrach T, Eckert K, Maurer HR, Machleidt I, Machleidt W, Nuck R (1998) Isolation and characterization of two forms of an acidic bromelain stem proteinase. J Protein Chem 17:351–361CrossRefGoogle Scholar
  16. Hide M, Bañuls AL (2008) Polymorphisms of cpb multicopy genes in the Leishmania (Leishmania) donovani complex. Trans R Soc Trop Med Hyg 102:105–106CrossRefGoogle Scholar
  17. Hogg PJ (2003) Disulfide bonds as switches for protein function. Trends Biochem Sci 28:210–214CrossRefGoogle Scholar
  18. Klemba M, Goldberg DE (2002) Biological roles of proteases in parasitic protozoa. Ann Rev Biochem 71:275–305CrossRefGoogle Scholar
  19. Lecaille F, Kaleta J, Bromme D (2002) Human and parasitic papain-like cysteine proteases: their role in physiology and pathology and recent developments in inhibitor design. Chem Rev 102:4459–4488CrossRefGoogle Scholar
  20. Mottram JC, Robertson CD, Coombs GH, Barry JD (1992) A developmentally regulated cysteine proteinase gene of Leishmania mexicana. Mol Microbiol 6:1925–1932CrossRefGoogle Scholar
  21. Mottram JC, Brooks DR, Coombs GH (1998) Roles of cysteine proteinases of trypanosomes and Leishmania in host-parasite interactions. Curr Opin Microbiol 1:455–460CrossRefGoogle Scholar
  22. Nakhaee A, Taheri T, Taghikhani M, Mohebali M, Salmanian AH, Fasel N, Rafati S (2004) Humoral and cellular immune responses against type I cysteine proteinase of Leishmania infantum are higher in asymptomatic than symptomatic dogs selected from a naturally infected population. Vet Parasitol 119:107–123CrossRefGoogle Scholar
  23. Park IY, Park CB, Kim MS, Kim SC (1998) Parasin I, an antimicrobial peptide derived from histone H2A in the catfish, Parasilurus asotus. FEBS Lett 437:258–262CrossRefGoogle Scholar
  24. Pereira BA, Silva FS, Rebello KM, Marín-Villa M, Traub-Cseko YM, Andrade TC, Bertho AL, Caffarena ER, Alves CR (2011) In silico predicted epitopes from the COOH-terminal extension of cysteine proteinase B inducing distinct immune responses during Leishmania (Leishmania) amazonensis experimental murine infection. BMC Immunol 8(12):44CrossRefGoogle Scholar
  25. Pereira BA, Souza-Silva F, Silva-Almeida M, Santos-de-Souza R, Gonçalves de Oliveira LF, Ribeiro-Guimarães ML, Alves CR (2014) Proteinase inhibitors: a promising drug class for treating leishmaniasis. Curr Drug Targets 15:1121–1131CrossRefGoogle Scholar
  26. Pral EM, da Moitinho ML, Balanco JM, Teixeira VR, Milder RV, Alfieri SC (2003) Growth phase and medium ph modulate the expression of proteinase activities and the development of megasomes in axenically cultivated Leishmania (Leishmania) amazonensis amastigote-like organisms. J Parasitol 89:35–43CrossRefGoogle Scholar
  27. Pütsep K, Bränden CI, Boman HG, Normark S (1999) Antibacterial peptide from H. pylori. Nature 398:671–672CrossRefGoogle Scholar
  28. Rebello KM, Côrtes LM, Pereira BA, Pascarelli BM, Côrte-Real S, Finkelstein LC, Pinho RT, d'Avila-Levy CM, Alves CR (2009) Cysteine proteinases from promastigotes of Leishmania (Viannia) braziliensis. Parasitol Res 106:95–104CrossRefGoogle Scholar
  29. Sakanari JA, Nadler SA, Chan VJ, Engel JC, Leptak C, Bouvier J (1997) Leishmania major: comparison of the cathepsin L- and B-like cysteine protease genes with those of other trypanosomatids. Exp Parasitol 85:63–76CrossRefGoogle Scholar
  30. Santos DA, de Souza Costa MG, Alves CR, Caffarena ER (2016) Structural and dynamic insights into the C-terminal extension of cysteine proteinase B from Leishmania amazonensis. J Mol Graph Model 70:30–39CrossRefGoogle Scholar
  31. Silva-Almeida M, Pereira BA, Ribeiro-Guimarães ML, Alves CR (2012) Proteinases as virulence factors in Leishmania spp. infection in mammals. Parasit Vectors 7(5):160CrossRefGoogle Scholar
  32. Silva-Almeida M, Souza-Silva F, Pereira BA, Ribeiro-Guimarães ML, Alves CR (2014) Overview of the organization of protease genes in the genome of Leishmania spp. Parasit Vectors 7:387CrossRefGoogle Scholar
  33. Souza-Silva F, Pereira BA, Finkelstein LC, Zucolotto V, Caffarena ER, Alves CR (2014) Dynamic identification of H2 epitopes from Leishmania (Leishmania) amazonensis cysteine proteinase B with potential immune activity during murine infection. J Mol Recognit 27:98–105CrossRefGoogle Scholar
  34. Teixeira DE, Benchimol M, Rodrigues JC, Crepaldi PH, Pimenta PF, de Souza W (2013) The cell biology of Leishmania: how to teach using animations. PLoS Pathog 9:e1003594CrossRefGoogle Scholar
  35. Traub-Cseko YM, Duboise M, Boukai LK, McMahon-Pratt D (1993) Identification of two distinct cysteine proteinase genes of Leishmania pifanoi axenic amastigotes using the polymerase chain reaction. Mol Biochem Parasitol 57:101–115CrossRefGoogle Scholar
  36. Van Regenmortel MHV (1996) Mapping epitope structure and activity: from one-dimensional prediction to four-dimensional description of antigenic specificity. Methods 9:465–472CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Raquel Santos-de-Souza
    • 1
  • Franklin Souza-Silva
    • 1
  • Barbara Cristina de Albuquerque-Melo
    • 1
  • Michelle Lopes Ribeiro-Guimarães
    • 1
  • Luzia Monteiro de Castro Côrtes
    • 1
  • Bernardo Acácio Santini Pereira
    • 1
  • Mariana Silva-Almeida
    • 1
  • Léa Cysne-Finkelstein
    • 2
  • Francisco Odencio Rodrigues de Oliveira Junior
    • 3
  • Mirian Claudia de Souza Pereira
    • 3
  • Carlos Roberto Alves
    • 1
    Email author
  1. 1.Laboratório de Biologia Molecular e Doenças EndêmicasFundação Oswaldo Cruz, Instituto Oswaldo CruzRio de JaneiroBrazil
  2. 2.Laboratório de ImunoparasitologiaFundação Oswaldo Cruz, Instituto Oswaldo CruzRio de JaneiroBrazil
  3. 3.Laboratório de Ultraestrutura CelularFundação Oswaldo Cruz, Instituto Oswaldo CruzRio de JaneiroBrazil

Personalised recommendations