Advertisement

Thecamoeba quadrilineata (Amoebozoa, Lobosa) as a new member of amphizoic amoebae—first isolation from endozoic conditions

  • Terézia Borovičková
  • Martin MrvaEmail author
  • Mária Garajová
Short Communication
  • 27 Downloads

Abstract

A free-living soil amoeba Thecamoeba quadrilineata (Carter, 1856) Lepşi, 1960 (Amoebozoa: Thecamoebidae) was isolated from endozoic conditions for the first time. Presence of amoebae was detected after 4 days following inoculation of the gut of the earthworm Lumbricus terrestris on agar plate with Escherichia coli. On the basis of our isolation, we consider T. quadrilineata as further amphizoic amoeba species. This study enlarges the range of amphizoic tendency in members of the genus Thecamoeba and stresses the need for further research on the pathogenic potential of Thecamoeba species.

Keywords

Amphizoic tendency Earthworm Free-living amoeba Gut Thecamoebidae 

Notes

Funding information

This work was supported by the Slovak Research and Development Agency under the contract No. APVV-15-0123. Further, it was supported with grants VEGA 1/0365/16, VEGA 1/0389/19, and KEGA 039UK-4/2019 provided by the Ministry of Education, Science, Research and Sport of the Slovak Republic.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Brown MW, Spiegel FW, Silberman JD (2007) Amoeba at attention: phylogenetic affinity of Sappinia pedata. J Eukaryot Microbiol 54:511–519.  https://doi.org/10.1111/j.1550-7408.2007.00292.x Google Scholar
  2. Dyková I, Kostka M (2013) Illustrated guide to culture collection of free-living amoebae. Academia, PragueGoogle Scholar
  3. Dyková I, Fiala I, Dvořáková H, Pecková H (2008) Living together: marine amoeba Thecamoeba hilla Schaeffer, 1926 and its endosymbiont Labyrinthula sp. Eur J Protistol 44:308–316.  https://doi.org/10.1016/j.ejop.2008.04.001 CrossRefGoogle Scholar
  4. Gelman BB, Popov V, Chaljub G, Nader R, Rauf SJ, Nauta HW, Visvesvara GS (2003) Neuropathological and ultrastructural features of amoebic encephalitis caused by Sappinia diploidea. J Neuropathol Exp Neurol 62:990–998CrossRefGoogle Scholar
  5. Hoffman GL (1999) Parasites of North American freshwater fishes, 2nd edn. Cornell University Press, IthacaGoogle Scholar
  6. Horn MA, Schramm A, Drake HL (2003) The earthworm gut: an ideal habitat for ingested N2O-producing microorganisms. Appl Environ Microbiol 69:1662–1669.  https://doi.org/10.1128/AEM.69.3.1662-1669.2003 CrossRefGoogle Scholar
  7. Kudryavtsev A, Hausmann K (2009) Thecamoeba aesculea n. sp. (Amoebozoa, Thecamoebidae), a terrestrial amoeba with affinities to Th. sphaeronucleus (Greeff, 1891). Acta Protozool 48:91–96Google Scholar
  8. Lorenzo-Morales J, Martínez-Carretero E, Batista N, Álvarez-Marín J, Bahaya Y, Walochnik J, Valladares B (2007) Early diagnosis of amoebic keratitis due to a mixed infection with Acanthamoeba and Hartmannella. Parasitol Res 102:167–169.  https://doi.org/10.1007/s00436-007-0754-x CrossRefGoogle Scholar
  9. Michel R (2008) Isolierung und Darstellung von intranukleären Parasiten aus Thecamoeba quadrilineata und Saccamoeba limax. Mikrokosmos 97:101–107Google Scholar
  10. Michel R, Schmid EN, Böker T, Hager DG, Müller K-D, Hoffmann R, Seitz HM (2000) Vannella sp. harboring microsporidia-like organisms isolated from the contact lens and inflamed eye of a female keratitis patient. Parasitol Res 86:514–520CrossRefGoogle Scholar
  11. Michel R, Müller K-D, Schmid EN, Theegarten D, Hauröder B, Corsaro D (2012) Isolation of Thecamoeba terricola from bark of Platanus occidentalis harbouring spore-forming eukaryotic endoparasites with intranuclear development. Endocytobios Cell Res 22:37–42Google Scholar
  12. Niyyati M, Lorenzo-Morales J, Rezaie S, Rahimi F, Martín-Navarro CM, Mohebali M, Maghsood AH, farnia S, Valladares B, Rezaeian M (2010) First report of a mixed infection due to Acanthamoeba genotype T3 and Vahlkampfia in a cosmetic soft contact lens wearer in Iran. Exp Parasitol 126:89–90.  https://doi.org/10.1016/j.exppara.2009.10.009 CrossRefGoogle Scholar
  13. Nowak BF, Bryan J, Jones SRM (2010) Do salmon lice, Lepeophtheirus salmonis, have a role in the epidemiology of amoebic gill disease caused by Neoparamoeba perurans? J Fish Dis 33:683–687.  https://doi.org/10.1111/j.1365-2761.2010.01158.x CrossRefGoogle Scholar
  14. Page FC (1977) The genus Thecamoeba (Protozoa, Gymnamoebia) species distinctions, locomotive morphology, and protozoan prey. J Nat Hist 11:25–63CrossRefGoogle Scholar
  15. Page FC (1983) Marine Gymnamoebae. Institute of Terestrial Ecology, CambridgeGoogle Scholar
  16. Page FC (1991) Nackte Rhizopoda. In: Page FC, Siemensma FJ (eds) Nackte Rhizopoda und Heliozoea. Gustav Fischer Verlag, Stuttgart, pp 3–170Google Scholar
  17. Piearce TG, Phillips MJ (1980) Fate of ciliates in the earthworm gut: an in vitro study. Microb Ecol 5:313–319CrossRefGoogle Scholar
  18. Ramirez E, Robles E, Martinez B (2010) Free-living amoebae isolated from water-hyacinth root (Eichhornia crassipes). Exp Parasitol 126:42–44.  https://doi.org/10.1016/j.exppara.2010.01.020 CrossRefGoogle Scholar
  19. Rouelle J (1983) Introduction of amoebae and Rhizobium japonicum into the gut of Eisenia foetida (Sav.) and Lumbricus terrestris L. In: Satchell J (ed) Earthworm ecology: from Darwin to vermiculture. Springer, Dordrecht, pp 375–381CrossRefGoogle Scholar
  20. Sawyer TK, Hnath JG, Conrad JF (1974) Thecamoeba hoffmani sp. n. (Amoebida: Thecamoebidae) from gills of fingerling salmonid fish. J Parasitol 60:677–682CrossRefGoogle Scholar
  21. Scheid P (2014) Relevance of free-living amoebae as hosts for phylogenetically diverse microorganisms. Parasitol Res 113:2407–2414.  https://doi.org/10.1007/s00436-014-3932-7 CrossRefGoogle Scholar
  22. Schuster FL, Visvesvara GS (2004) Free-living amoebae as opportunistic and nonopportunistic pathogens of humans and animals. Int J Parasitol 34:1001–1027.  https://doi.org/10.1016/j.ijpara.2004.06.004 CrossRefGoogle Scholar
  23. Singleton DR, Hendrix PF, Coleman DC, Whitman WB (2003) Identification of uncultured bacteria tightly associated with the intestine of earthworm Lumbricus rubellus (Lumbricidae; Oligochaeta). Soil Biol Biochem 35:1547–1555.  https://doi.org/10.1016/S0038-0717(03)00244-X CrossRefGoogle Scholar
  24. Smirnov AV, Brown S (2004) Guide to the methods of study and identification of soil gymnamoebae. Protistology 3:148–190Google Scholar
  25. Smirnov AV, Nassonova ES, Berney C, Fahrni J, Bolivar I, Pawlowski J (2005) Molecular phylogeny and classification of the lobose amoebae. Protist 156:129–142.  https://doi.org/10.1016/j.protis.2005.06.002 CrossRefGoogle Scholar
  26. Williams AP, Roberts P, Avery LM, Killham K, Jones DL (2006) Earthworms as vectors of Escgerichia coli O157:H7 in soil and vermicomposts. FEMS Microbiol Ecol 58:54–64.  https://doi.org/10.1111/j.1574-6941.2006.00142.x CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Terézia Borovičková
    • 1
  • Martin Mrva
    • 1
    Email author
  • Mária Garajová
    • 1
  1. 1.Department of Zoology, Faculty of Natural SciencesComenius University in BratislavaBratislava 4Slovak Republic

Personalised recommendations