Parasitology Research

, Volume 118, Issue 2, pp 505–516 | Cite as

In vitro and in vivo evaluation of six artemisinin derivatives against Schistosoma mansoni

  • Sheila de A. P. Corrêa
  • Rosimeire N. de Oliveira
  • Tiago M. F. Mendes
  • Karina Rodrigues dos Santos
  • Sinésio Boaventura Jr.
  • Vera Lúcia Garcia
  • Verónica de L. S. Jeraldo
  • Silmara M. AllegrettiEmail author
Helminthology - Original Paper


Schistosomiasis is a tropical neglected disease whose socioeconomic impact is surpassed only by malaria. Until recently, praziquantel (PZQ) has been the only available drug, raising concerns that tolerant/resistant strains may appear. Since the discovery of the schistosomicidal potential of artemisinin (ART), new derivatives have been produced and evaluated. In this work, we evaluated the activity of ART derivatives against Schistosoma mansoni, both in vitro and in vivo. In the in vitro assay, worm survival, oviposition, and morphological alterations were evaluated. Further analysis of morphological alterations and membrane integrity was conducted using scanning electron microscopy and a cell-permeable, benzimidazole dye (Hoescht 33258) that binds to the minor groove of double stranded DNA. For the in vivo assay, artesunic acid (AcART) and dihydroartemisinin acetate (AcDQHS) were selected, since they showed the best in vitro results. Infected mice treated 21, 45, or 60 days post-infection (dpi), with a concentration of 100 mg/kg of either AcART or AcDQHS, showed a significant worm reduction (particularly in females), fewer eggs eliminated in feces, and a decrease of immature eggs in the intestinal tissues. Our results indicate that AcART and AcDQHS have some schistosomicidal activity against juvenile and adult stages of S. mansoni.


Schistosoma mansoni Artemisinin derivatives Artesunic acid Dihydroartemisinin acetate 



The authors thank the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) for their support, Finance Code 001. The authors also thank Dr. Paul Ormond for revising the manuscript.

Compliance with ethical standards

Conflict of interest

The authors confirm that there are no known conflicts of interest associated with this publication and there has been no financial support for this work that could have influenced its outcome.

Supplementary material

436_2018_6188_Fig6_ESM.png (204 kb)
Figure S1

Cytotoxic analysis. Growth curves of non-tumor (HaCaT) and tumor (U251; MCF-7; NCI-ADR/RES; 786-0; NCI-H460; PC-3; OVCAR-03; HT29; K562) cell lines after exposure for 48 h to different concentrations of A) doxorubicin (reference drug), B) artesunic acid and C) dihydroartemisinin acetate. (PNG 203 kb)

436_2018_6188_MOESM1_ESM.tif (258 kb)
High-resolution image (TIF 257 kb)


  1. Allegretti SM, Oliveira CNFd, Oliveira RNd, Frezza TF, Rehder VLcG, 2012. The use of Brazilian medicinal plants to combat Schistosoma mansoni, schistosomiasis. In: Rokni MB (ed) Schistosomiasis. InTechGoogle Scholar
  2. Ansari MT, Karim S, Ranjha NM, Shah NH, Muhammad S (2010) Physicochemical characterization of artemether solid dispersions with hydrophilic carriers by freeze dried and melt methods. Arch Pharm Res 33:901–910CrossRefGoogle Scholar
  3. Ansari MT, Saify ZS, Sultana N, Ahmad I, Saeed-Ul-Hassan S, Tariq I, Khanum M (2013) Malaria and artemisinin derivatives: an updated review. Mini Rev Med Chem 13:1879–1902CrossRefGoogle Scholar
  4. Cioli D, Pica-Mattoccia L, Basso A, Guidi A (2014) Schistosomiasis control: praziquantel forever? Mol Biochem Parasitol 195:23–29CrossRefGoogle Scholar
  5. de Oliveira CNF, Frezza TF, Garcia VL, Figueira GM, Mendes TMF, Allegretti SM (2017a) Schistosoma mansoni: in vivo evaluation of Phyllanthus amarus hexanic and ethanolic extracts. Exp Parasitol 183:56–63CrossRefGoogle Scholar
  6. de Oliveira RN, Dos Santos KR, Mendes TMF, Garcia VL, Santos Oliveira AS, de Lourdes Sierpe Jeraldo V, Allegretti SM (2017b) Sesquiterpenes evaluation on Schistosoma mansoni: survival, excretory system and membrane integrity. Biomed Pharmacother Biomed Pharmacother 90:813–820CrossRefGoogle Scholar
  7. Denny C, Zacharias ME, Ruiz AL, do Carmo EdAM, Bittrich V, Kohn LK, de Oliveira Sousa IM, Rodrigues RA, de Carvalho JE, Foglio MA (2008) Antiproliferative properties of polyketides isolated from Virola sebifera leaves. Phytother Res PTR 22:127–130CrossRefGoogle Scholar
  8. Doenhoff MJ, Cioli D, Utzinger J (2008) Praziquantel: mechanisms of action, resistance and new derivatives for schistosomiasis. Curr Opin Infect Dis 21:659–667CrossRefGoogle Scholar
  9. Frezza TF, Oliveira CNF, Banin TM, Rehder VLG, Boaventura JS, Allegretti SM (2013) Tegumentary changes in two different strains of Schistosoma mansoni treated with artemisinin and artesunic acid. J Trop Pathol 42:309–321Google Scholar
  10. Gryseels B, Mbaye A, De Vlas SJ, Stelma FF, Guisse F, Van Lieshout L, Faye D, Diop M, Ly A, Tchuem-Tchuente LA, Engels D, Polman K (2001) Are poor responses to praziquantel for the treatment of Schistosoma mansoni infections in Senegal due to resistance? An overview of the evidence. Trop Med Int Health: TM & IH 6:864–873CrossRefGoogle Scholar
  11. Katz N (2008) Terapêutica experimental da esquistossomose mansoni. In: Carvalho OS, Coelho PM, Lenzi HL (eds) Schistosoma Mansoni & Esquistossomose Uma Visão Multidisciplinar. Fiocruz, Rio de Janeiro, pp 825–870Google Scholar
  12. Li HJ, Wang W, Li YZ, Qu GL, Xing YT, Qian K, Jia Y, Yang ZK, Qian YL, Dai JR, Liang YS (2013) In vivo activity of dihydroartemisinin against Schistosoma mansoni schistosomula in mice. Southeast Asian J Trop Med Public Health 44:379–387Google Scholar
  13. Monks A, Scudiero D, Skehan P, Shoemaker R, Paull K, Vistica D, Hose C, Langley J, Cronise P, Vaigro-Wolff A et al (1991) Feasibility of a high-flux anticancer drug screen using a diverse panel of cultured human tumor cell lines. J Natl Cancer Inst 83:757–766CrossRefGoogle Scholar
  14. Olivier L, Stirewalt MA (1952) An efficient method for exposure of mice to cercariae of Schistosoma mansoni. J Parasitol 38:19–23CrossRefGoogle Scholar
  15. Pellegrino J, Siqueira AF (1956) Técnica de perfusão para colheita de Schistosoma mansoni em cobaias experimentalmente infectadas. Rev Bras Malariol 8:589–597Google Scholar
  16. Pellegrino J, Oliveira CA, Faria J, Cunha AS (1962) New approach to the screening of drugs in experimental schistosomiasis mansoni in mice. Am J Trop Med Hyg 11:201–215CrossRefGoogle Scholar
  17. Pinto-Almeida A, Mendes T, Armada A, Belo S, Carrilho E, Viveiros M, Afonso A (2015) The role of efflux pumps in Schistosoma mansoni praziquantel resistant phenotype. PloS One 10:e0140147CrossRefGoogle Scholar
  18. Rodrigues RAF, Foglio MA, Boaventura Júnior S, Santos AdS, Rehder VLG (2006) Otimização do processo de extração e isolamento do antimalárico artemisinina a partir de Artemisia annua L. Quím Nova 29:368–372CrossRefGoogle Scholar
  19. Shoemaker RH (2006) The NCI60 human tumour cell line anticancer drug screen. Nat Rev Cancer 6:813–823CrossRefGoogle Scholar
  20. Thetiot-Laurent SA, Boissier J, Robert A, Meunier B (2013) Schistosomiasis chemotherapy. Angew Chem Intl Ed Engl 52:7936–7956CrossRefGoogle Scholar
  21. Utzinger J, Xiao S, N'Goran EK, Bergquist R, Tanner M (2001) The potential of artemether for the control of schistosomiasis. Int J Parasitol 31:1549–1562CrossRefGoogle Scholar
  22. Utzinger J, Xiao SH, Tanner M, Keiser J (2007) Artemisinins for schistosomiasis and beyond. Curr Opin Investig Drugs 8:105–116Google Scholar
  23. WHO (2016) Schistosomiasis: number of people treated worldwide in 2014. Releve Epidemiol Hebdomadaire 91:53–60Google Scholar
  24. Xiao S, Binggui S, Chollet J, Tanner M (2000) Tegumental changes in 21-day-old Schistosoma mansoni harboured in mice treated with artemether. Acta Trop 75:341–348CrossRefGoogle Scholar
  25. Xiao SH, Guo J, Chollet J, Wu JT, Tanner M, Utzinger J (2004) Effect of artemether on Schistosoma mansoni: dose-efficacy relationship, and changes in worm morphology and histopathology. Zhongguo Ji Sheng Chong Xue Yu Ji Sheng Chong Bing Za Zhi 22:148–153Google Scholar
  26. Yoshioka L, Zanotti-Magalhaes EM, Magalhaes LA, Linhares AX (2002) Schistosoma mansoni: estudo da patogenia da linhagem Santa Rosa (Campinas, SP, Brasil) em camundongos. Rev Soc Bras Med Trop 35:203–207CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Sheila de A. P. Corrêa
    • 1
  • Rosimeire N. de Oliveira
    • 1
  • Tiago M. F. Mendes
    • 1
  • Karina Rodrigues dos Santos
    • 1
  • Sinésio Boaventura Jr.
    • 2
  • Vera Lúcia Garcia
    • 2
  • Verónica de L. S. Jeraldo
    • 3
  • Silmara M. Allegretti
    • 1
    Email author
  1. 1.Animal Biology Department, Biology InstituteCampinas State University (UNICAMP)CampinasBrazil
  2. 2.Multidisciplinary Center of Chemical Biological and Agricultural Research (CPQBA)Campinas State University (UNICAMP)PaulíniaBrazil
  3. 3.ITP, Infectious and Parasitic Diseases LaboratoryInstitute of Technology and ResearchAracajuBrazil

Personalised recommendations