Advertisement

Parasitology Research

, Volume 118, Issue 2, pp 693–699 | Cite as

Chinese liver fluke Clonorchis sinensis infection changes the gut microbiome and increases probiotic Lactobacillus in mice

  • Ju Yeong Kim
  • Eun-Min Kim
  • Myung-hee Yi
  • Jinyoung Lee
  • Seogwon Lee
  • Younjee Hwang
  • Dongeun Yong
  • Woon-Mok Sohn
  • Tai-Soon YongEmail author
Helminthology - Short Communication

Abstract

Chinese liver fluke Clonorchis sinensis changes the host’s immune system. Recently, it has been reported that helminths including C. sinensis can ameliorate immune-related diseases such as allergy. In addition, recent studies showed that helminth infection can alleviate immune-mediated disorders by altering the gut microbiome. However, changes in the gut microbiome due to C. sinensis have not been reported yet. In this study, changes in the gut microbiome of C57BL/6 mice infected with C. sinensis metacercariae were evaluated over time. Stool was analyzed by 16S rRNA amplicon analysis using high-throughput sequencing technology. There was no apparent difference in species richness and diversity between the infected and control groups. However, the composition of the microbiome was different between the infected and control groups at 20 days and 30 days post-infection, and the difference disappeared at 50 days post-infection. In particular, this microbiome alteration was associated with a change in the relative abundance of genus Lactobacillus and the probiotic Lactobacillus species that are known to have an immune-modulation role in immune-mediated diseases.

Keywords

Clonorchis sinensis Gut microbiome Lactobacillus Metagenomics Liver fluke 

Notes

Funding information

This study was supported by a National Research Foundation of Korea (NRF) grant funded by the Korean Government (MEST; numbers NRF-2016R1A2B4016194 and 2011-0012166).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Research involving animals

All animal protocols were approved by the Institutional Animal Care and Use Committee at Yonsei University College of Medicine (No. 2015–0339). Animal experiments were carried out in animal biosafety level-3 (ABL-3) facilities in accordance with standard management practices.

Supplementary material

436_2018_6179_MOESM1_ESM.pdf (34 kb)
Fig. S1 Box plots of relative abundance of Lactobacillus over time. * p < 0.05 in Wilcoxon rank-sum test. (PDF 33.7 kb)
436_2018_6179_MOESM2_ESM.pdf (209 kb)
Fig. S2 Eggs of Clonorchis sinensis in liver section of infected mouse at 50 days post-infection (hematoxylin and eosin staining, 400x). Black arrows indicate the eggs. (PDF 209 kb)
436_2018_6179_MOESM3_ESM.docx (16 kb)
ESM 1 (DOCX 16.2 kb)
436_2018_6179_MOESM4_ESM.docx (16 kb)
ESM 2 (DOCX 15.5 kb)
436_2018_6179_MOESM5_ESM.docx (15 kb)
ESM 3 (DOCX 15.1 kb)
436_2018_6179_MOESM6_ESM.docx (30 kb)
ESM 4 (DOCX 29.7 kb)
436_2018_6179_MOESM7_ESM.docx (14 kb)
ESM 5 (DOCX 14.2 kb)

References

  1. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410CrossRefGoogle Scholar
  2. Anderson MJ (2001) A new method for non-parametric multivariate analysis of variance. Austral Eco 26:32–46Google Scholar
  3. Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114–2120CrossRefGoogle Scholar
  4. Broadhurst MJ, Ardeshir A, Kanwar B, Mirpuri J, Gundra UM, Leung JM, Wiens KE, Vujkovic-Cvijin I, Kim CC, Yarovinsky F, Lerche NW, McCune JM, Loke P (2012) Therapeutic helminth infection of macaques with idiopathic chronic diarrhea alters the inflammatory signature and mucosal microbiota of the colon. PLoS Pathog 8:e1003000CrossRefGoogle Scholar
  5. Choi MH, Chang YS, Lim MK, Bae YM, Hong ST, Oh JK, Yun EH, Bae MJ, Kwon HS, Lee SM, Park HW, Min KU, Kim YY, Cho SH (2011) Clonorchis sinensis infection is positively associated with atopy in endemic area. Clin Exp Allergy 41:697–705CrossRefGoogle Scholar
  6. Choi YK, Yoon BI, Won YS, Lee CH, Hyun BH, Kim HC, Oh GT, Kim DY (2003) Cytokine responses in mice infected with Clonorchis sinensis. Parasitol Res 91:87–93CrossRefGoogle Scholar
  7. Cooper PJ, Chico ME, Rodrigues LC, Ordonez M, Strachan D, Griffin GE, Nutman TB (2003) Reduced risk of atopy among school-age children infected with geohelminth parasites in a rural area of the tropics. J Allergy Clin Immunol 111:995–1000CrossRefGoogle Scholar
  8. Deenonpoe R, Chomvarin C, Pairojkul C, Chamgramol Y, Loukas A, Brindley PJ, Sripa B (2015) The carcinogenic liver fluke Opisthorchis viverrini is a reservoir for species of Helicobacter. Asian Pac J Cancer Prev 16:1751–1758CrossRefGoogle Scholar
  9. Edgar RC (2010) Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26:2460–2461CrossRefGoogle Scholar
  10. Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R (2011) UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27:2194–2200CrossRefGoogle Scholar
  11. Feary J, Britton J, Leonardi-Bee J (2011) Atopy and current intestinal parasite infection: a systematic review and meta-analysis. Allergy 66:569–578CrossRefGoogle Scholar
  12. Finlay CM, Stefanska AM, Coleman MM, Jahns H, Cassidy JP, McLoughlin RM, Mills KHG (2017) Secreted products of Fasciola hepatica inhibit the induction of T cell responses that mediate allergy. Parasite Immunol 39:EpubGoogle Scholar
  13. Fu L, Niu B, Zhu Z, Wu S, Li W (2012) CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics 28:3150–3152CrossRefGoogle Scholar
  14. Gower JC (1966) Some distance properties of latent root and vector methods used in multivariate analysis. Biometrika 53:325–338CrossRefGoogle Scholar
  15. Hong ST (2003) Clonorchis sinensis. In: Miliotis MD, Bier JW (ed) International handbook of foodborne pathogens. Marcel Dekker, New York, Ch. 35Google Scholar
  16. Itthitaetrakool U, Pinlaor P, Pinlaor S, Chomvarin C, Dangtakot R, Chaidee A, Wilailuckana C, Sangka A, Lulitanond A, Yongvanit P (2016) Chronic Opisthorchis viverrini infection changes the liver microbiome and promotes Helicobacter growth. PLoS One 11:e0165798CrossRefGoogle Scholar
  17. Jeong YI, Kim SH, Ju JW, Cho SH, Lee WJ, Park JW, Park YM, Lee SE (2011) Clonorchis sinensis-derived total protein attenuates airway inflammation in murine asthma model by inducing regulatory T cells and modulating dendritic cell functions. Biochem Biophys Res Commun 407:793–800CrossRefGoogle Scholar
  18. Kaewpitoon SJ, Loyd RA, Rujirakul R, Panpimanmas S, Matrakool L, Tongtawee T, Kootanavanichpong N, Pengsaa P, Kompor P, Chavengkun W, Kujapun J, Norkaew J, Ponphimai S, Padchasuwan N, Polsripradist P, Eksanti T, Phatisena T, Kaewpitoon N (2016) Helicobacter species are possible risk factors of cholangiocarcinoma. Asian Pac J Cancer Prev 17:37–44CrossRefGoogle Scholar
  19. Karimi K, Inman MD, Bienenstock J, Forsythe P (2009) Lactobacillus reuteri-induced regulatory T cells protect against an allergic airway response in mice. Am J Respir Crit Care Med 179:186–193CrossRefGoogle Scholar
  20. Kim EM, Kwak YS, Yi MH, Kim JY, Sohn WM, Yong TS (2017) Clonorchis sinensis antigens alter hepatic macrophage polarization in vitro and in vivo. PLoS Negl Trop Dis 11:e0005614CrossRefGoogle Scholar
  21. Kim JY, Yi MH, Hwang Y, Lee JY, Lee IY, Yong D, Yong TS (2018a) 16S rRNA profiling of the Dermatophagoides farinae core microbiome: Enterococcus and Bartonella. Clin Exp Allergy 48:607–610CrossRefGoogle Scholar
  22. Kim JY, Kim EM, Yi MH, Lee J, Lee S, Hwang Y, Yong D, Sohn WM, Yong TS (2018b) Intestinal fluke Metagonimus yokogawai infection increases probiotic Lactobacillus in mouse cecum. Exp Parasitol 193:45–50CrossRefGoogle Scholar
  23. Li RW, Wu S, Li W, Navarro K, Couch RD, Hill D, Urban JF Jr (2012) Alterations in the porcine colon microbiota induced by the gastrointestinal nematode Trichuris suis. Infect Immun 80:2150–2157CrossRefGoogle Scholar
  24. Liu Y, Fatheree NY, Mangalat N, Rhoads JM (2012) Lactobacillus reuteri strains reduce incidence and severity of experimental necrotizing enterocolitis via modulation of TLR4 and NF-κB signaling in the intestine. Am J Physiol Gastrointest Liver Physiol 302:608–617CrossRefGoogle Scholar
  25. Liu Y, Fatheree NY, Dingle BM, Tran DQ, Rhoads JM (2013) Lactobacillus reuteri DSM 17938 changes the frequency of Foxp3+ regulatory T cells in the intestine and mesenteric lymph node in experimental necrotizing enterocolitis. PLoS One 8:e56547CrossRefGoogle Scholar
  26. Lozupone C, Knight R (2005) UniFrac: a new phylogenetic method for comparing microbial communities. Appl Environ Microbiol 71:8228–8235CrossRefGoogle Scholar
  27. Maizels RM, Yazdanbakhsh M (2003) Immune regulation by helminth parasites: cellular and molecular mechanisms. Nat Rev Immunol 3:733–744CrossRefGoogle Scholar
  28. Masella AP, Bartram AK, Truszkowski JM, Brown DG, Neufeld JD (2012) PANDAseq: paired-end assembler for illumina sequences. BMC bioinformatics 13:31CrossRefGoogle Scholar
  29. Myers EW, Miller W (1988) Optimal alignments in linear space. Comput Appl Biosci 4:11–17Google Scholar
  30. Osborne LC, Monticelli LA, Nice TJ, Sutherland TE, Siracusa MC, Hepworth MR, Tomov VT, Kobuley D, Tran SV, Bittinger K, Bailey AG, Laughlin AL, Boucher JL, Wherry EJ, Bushman FD, Allen JE, Virgin HW, Artis D (2014) Coinfection. Virus-helminth coinfection reveals a microbiota-independent mechanism of immunomodulation. Science 345:578–582CrossRefGoogle Scholar
  31. Plieskatt JL, Deenonpoe R, Mulvenna JP, Krause L, Sripa B, Bethony JM, Brindley PJ (2013) Infection with the carcinogenic liver fluke Opisthorchis viverrini modifies intestinal and biliary microbiome. FASEB J 27:4572–4584CrossRefGoogle Scholar
  32. Rausch S, Held J, Fischer A, Heimesaat MM, Ku¨hl, AA, Bereswill S, Hartmann S (2013) Small intestinal nematode infection of mice is associated with increased enterobacterial loads alongside the intestinal tract. PLoS ONE 8:e74026Google Scholar
  33. Rim HJ (2005) Clonorchiasis: an update. J Helminthol 79:269–281CrossRefGoogle Scholar
  34. Saltykova IV, Petrov VA, Logacheva MD, Ivanova PG, Merzlikin NV, Sazonov AE, Ogorodova LM, Brindley PJ (2016) Biliary microbiota, gallstone disease and infection with Opisthorchis felineus. PLoS Negl Trop Dis 10:e0004809CrossRefGoogle Scholar
  35. Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ, Sahl JW, Stres B, Thallinger GG, Van Horn DJ, Weber CF (2009) Introducing mothur: open-source, platform-independent, community supported software for describing and comparing microbial communities. Appl Environ Microbiol 75:7537–7541CrossRefGoogle Scholar
  36. Segata N, Izard J, Waldron L, Gevers D, Miropolsky L, Garrett WS, Huttenhower C (2011) Metagenomic biomarker discovery and explanation. Genome Biol 12:R60CrossRefGoogle Scholar
  37. Shannon C, Petigara N, Seshasai S (1948) A mathematical theory of communication. Bell Syst Tech J 27:379–423CrossRefGoogle Scholar
  38. Uddin MH, Li S, Bae YM, Choi MH, Hong ST (2012) Strain variation in the susceptibility and immune response to Clonorchis sinensis infection in mice. Parasitol Int 61:118–123CrossRefGoogle Scholar
  39. Walk ST, Blum AM, Ewing SA, Weinstock JV, Young VB (2010) Alteration of the murine gut microbiota during infection with the parasitic helminth Heligmosomoides polygyrus. Inflamm Bowel Dis 16:1841–1849CrossRefGoogle Scholar
  40. Wammes LJ, Mpairwe H, Elliott AM, Yazdanbakhsh M (2014) Helminth therapy or elimination: epidemiological, immunological, and clinical considerations. Lancet Infect Dis 14:1150–1162CrossRefGoogle Scholar
  41. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y, Seo H, Chun J (2017) Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 67:1613–1617CrossRefGoogle Scholar
  42. Zaiss MM, Rapin A, Lebon L, Dubey LK, Mosconi I, Sarter K, Piersigilli A, Menin L, Walker AW, Rougemont J, Paerewijck O, Geldhof P, McCoy KD, Macpherson AJ, Croese J, Giacomin PR, Loukas A, Junt T, Marsland BJ, Harris NL (2015) The intestinal microbiota contributes to the ability of helminths to modulate allergic inflammation. Immunity 43:998–1010CrossRefGoogle Scholar
  43. Zaiss MM, Harris NL (2016) Interactions between the intestinal microbiome and helminth parasites. Parasite Immunol 38:5–11CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Ju Yeong Kim
    • 1
    • 2
  • Eun-Min Kim
    • 1
  • Myung-hee Yi
    • 1
  • Jinyoung Lee
    • 1
  • Seogwon Lee
    • 1
  • Younjee Hwang
    • 2
    • 3
  • Dongeun Yong
    • 3
  • Woon-Mok Sohn
    • 4
  • Tai-Soon Yong
    • 1
    Email author
  1. 1.Department of Environmental Medical Biology, Institute of Tropical Medicine, and Arthropods of Medical Importance Resource BankYonsei University College of MedicineSeoulKorea
  2. 2.Brain Korea 21 PLUS Project for Medical ScienceYonsei University College of MedicineSeoulKorea
  3. 3.Department of Laboratory Medicine and Research Institute of Bacterial ResistanceYonsei University College of MedicineSeoulKorea
  4. 4.Department of Parasitology and Tropical Medicine, and Institute of Health SciencesGyeongsang National University College of MedicineJinjuKorea

Personalised recommendations