Parasitology Research

, Volume 118, Issue 2, pp 715–721 | Cite as

Double-stranded RNA reduces growth rates of the gut parasite Crithidia mellificae

  • Kleber de Sousa PereiraEmail author
  • Niels Piot
  • Guy Smagghe
  • Ivan MeeusEmail author
Treatment and Prophylaxis - Short Communication


Parasites of managed bees can disrupt the colony success of the host, but also influence local bee-parasite dynamics, which is regarded as a threat for wild bees. Therapeutic measures have been suggested to improve the health of managed bees, for instance, exploiting the bees’ RNA interference (RNAi) pathway to treat against viral pathogens. Gut trypanosomes are an important group of bee parasites in at least two common managed bee species, i.e., managed Apis mellifera and reared Bombus terrestris. In several trypanosomes, RNAi activity is present, while in other associated genes of RNAi, such as Dicer-like (DCL) and Argonaute (AGO), it is lost. Up to date, the ability to exploit the RNAi of gut trypanosomes of bees has remained unexplored. Here, we screened parasite genomes of two honey bee protozoa (Crithidia mellificae and Lotmaria passim) and two bumble bee protozoa (Crithidia bombi and Crithidia expoeki) for the presence of DCL and AGO proteins. For C. mellificae, we constructed a double-stranded RNA (dsRNA) targeting kinetoplastid membrane protein-11 (KMP-11) to test the RNAi potential to kill this parasite. Transfection with KMP-11 dsRNA, but also adding it to the growth medium resulted in small growth reduction of the trypanosome C. mellificae, thereby showing the limited potential to apply dsRNA therapeutics to control trypanosome infection in managed honey bee species. Within bumble bees, there seems to be no application potentials against C. bombi, as we could only retrieve non-functional DCL- and AGO-related genes within the genome of this bumble bee parasite.


dsRNA Honey bee gut parasite Managed bee Parasite control Prevention RNAi 



The authors thank the Laboratory of Phytopathology of Ghent University for the use of the electroporation apparatus.


This study was supported by the National Council of Scientific and Technological Development (CNPq) of Brazil and the Research Foundation-Flanders (FWO-Vlaanderen).

Compliance with ethical standards

Conflict of interest

The authors declare that there is no conflict of interest.

Supplementary material

436_2018_6176_MOESM1_ESM.docx (822 kb)
ESM 1 (DOCX 821 kb)
436_2018_6176_MOESM2_ESM.docx (836 kb)
ESM 2 (DOCX 835 kb)
436_2018_6176_MOESM3_ESM.docx (20 kb)
ESM 3 (DOCX 20 kb)


  1. Barros RRM, Gibson TJ, Kite WA, Sá JM, Wellems TE (2017) Comparison of two methods for transformation of Plasmodium knowlesi: direct schizont electroporation and spontaneous plasmid uptake from plasmid-loaded red blood cells. Mol Biochem Parasit 218:16–22. CrossRefGoogle Scholar
  2. Brown MJF, Loosli R, Schmid-Hempel P (2000) Condition-dependent expression of virulence in a trypanosome infecting bumblebees. Oikos 91:421–427. CrossRefGoogle Scholar
  3. Chen Y, Evans JD (2012) RNAi in treating honey bee diseases. Bee Cult 140:27–29Google Scholar
  4. Cisarovsky G, Schmid-Hempel P (2014) Few colonies of the host Bombus terrestris disproportionately affect the genetic diversity of its parasite, Crithidia bombi. Infect Genet Evol 21:192–197. CrossRefGoogle Scholar
  5. Cottrell TR, Doering TL (2003) Silence of the strands: RNA interference in eukaryotic pathogens. Trends Microbiol 11:37–43. CrossRefGoogle Scholar
  6. da Fonseca Pires S, Fialho LC Jr, Silva SO, Melo MN, de Souza CC, Tafuri WL, Bruna Romero O, de Andrade HM (2014) Identification of virulence factors in Leishmania infantum strains by a proteomic approach. J Proteome Res 13:1860–1872. CrossRefGoogle Scholar
  7. Desai S, Eu YJ, Whyard S, Currie R (2012) Reduction in deformed wing virus infection in larval and adult honey bees (Apis mellifera L.) by double-stranded RNA ingestion. Insect Mol Biol 21:446–455. CrossRefGoogle Scholar
  8. Durrer S, Schmid-Hempel P (1994) Shared use of flowers leads to horizontal pathogen transmission. Proc R Soc Lond Ser B Biol Sci 258:299–302. CrossRefGoogle Scholar
  9. Finkelsztein EJ, Diaz-Soto JC, Vargas-Zambrano JC, Suesca E, Guzmán F, López MC, Thomas MC, Forero-Shelton M, Cuellar A, Puerta CJ, González JM (2015) Altering the motility of Trypanosoma cruzi with rabbit polyclonal anti-peptide antibodies reduces infection to susceptible mammalian cells. Exp Parasitol 150:36–43. CrossRefGoogle Scholar
  10. Fuertes MA, Pérez JM, Soto M, López MC, Alonso C (2001) Calcium-induced conformational changes in Leishmania infantum kinetoplastid membrane protein-11. J Biol Inorg Chem 6:107–117. CrossRefGoogle Scholar
  11. Gallot-Lavallée M, Schmid-Hempel R, Vandame R, Vergara CH, Schmid-Hempel P (2016) Large scale patterns of abundance and distribution of parasites in Mexican bumblebees. J Invertebr Pathol 133:73–82. CrossRefGoogle Scholar
  12. Gomaa F, Garcia PA, Delaney J, Girguis PR, Buie CR, Edgcomb VP (2017) Toward establishing model organisms for marine protists: successful transfection protocols for Parabodo caudatus (Kinetoplastida: Excavata). Environ Microbiol 19:3487–3499. CrossRefGoogle Scholar
  13. Graystock P, Yates K, Evison SE, Darvill B, Goulson D, Hughes WOH (2013) The Trojan hives: pollinator pathogens, imported and distributed in bumblebee colonies. J Appl Ecol 50:1207–1215. Google Scholar
  14. Graystock P, Jones JC, Pamminger T, Parkinson JF, Norman V, Blane EJ, Rothstein L, Wäckers F, Goulson D, Hughes WO (2016) Hygienic food to reduce pathogen risk to bumblebees. J Invertebr Pathol 136:68–73. CrossRefGoogle Scholar
  15. Hasenkamp S, Russell KT, Horrocks P (2012) Comparison of the absolute and relative efficiencies of electroporation-based transfection protocols for Plasmodium falciparum. Malaria J 11:210. CrossRefGoogle Scholar
  16. Koressaar T, Remm M (2007) Enhancements and modifications of primer design program Primer3. Bioinformatics 23:1289–1291. CrossRefGoogle Scholar
  17. Li Z, Wang CC (2008) KMP-11, a basal body and flagellar protein, is required for cell division in Trypanosoma brucei. Eukaryot Cell 7:1941–1950. CrossRefGoogle Scholar
  18. Li Z, Lee JH, Chu F, Burlingame AL, Günzl A, Wang CC (2008) Identification of a novel chromosomal passenger complex and its unique localization during cytokinesis in Trypanosoma brucei. PLoS One 3(6):e2354. CrossRefGoogle Scholar
  19. Liu X, Zhang Y, Yan X, Han R (2010) Prevention of Chinese sacbrood virus infection in Apis cerana using RNA interference. Curr Microbiol 61:422–428. CrossRefGoogle Scholar
  20. Lye L-F, Owens K, Shi H, Murta SMF, Vieira AC, Turco SJ, Tschudi C, Ullu E, Beverley SM (2010) Retention and loss of RNA interference pathways in trypanosomatid protozoans. PLoS Pathog 6(10):e1001161. CrossRefGoogle Scholar
  21. Maori E, Paldi N, Shafir S, Kalev H, Tsur E, Glick E, Sela I (2009) IAPV, a bee-affecting virus associated with colony collapse disorder can be silenced by dsRNA ingestion. Insect Mol Biol 18:55–60. CrossRefGoogle Scholar
  22. Marchler-Bauer A, Bo Y, Han L, He J, Lanczcki CJ, Lu S, Chitsaz F, Derbyshire MK, Geer RC, Gonzales NR, Gwadz M, Hurwitz DI, LU F, Marchler GH, Song JS, Thanki N, Wang Z, Yamashita RA, Zhang D, Zheng C, Geer LY, Bryant SH (2017) CDD/SPARCLE: functional classification of proteins via subfamily domain architectures. Nucleic Acids Res 45:200–203. CrossRefGoogle Scholar
  23. Mäser P, Grether-Bühler Y, Kaminsky R, Brun R (2002) An anti-contamination cocktail for the in vitro isolation and cultivation of parasitic protozoa. Parasitol Res 88(2):172–174. CrossRefGoogle Scholar
  24. Matveyev AV, Alves JM, Serrano MG, Lee V, Lara AM, Barton WA, Costa-Martins AG, Beverley SM, Camargo EP, Teixeira MMG, Buck GA (2017) The evolutionary loss of RNAi key determinants in kinetoplastids as a multiple sporadic phenomenon. J Mol Evol 84:1–12. CrossRefGoogle Scholar
  25. Mbang-Benet D-E, Sterkers Y, Crobu L, Sarrazin A, Bastien P, Pagès M (2015) RNA interference screen reveals a high proportion of mitochondrial proteins essential for correct cell cycle progress in Trypanosoma brucei. BMC Genomics 16(297):297. CrossRefGoogle Scholar
  26. Murray TE, Coffey MF, Kehoe E, Horgan FG (2013) Pathogen prevalence in commercially reared bumble bees and evidence of spillover in conspecific populations. Biol Conserv 159:269–276. CrossRefGoogle Scholar
  27. Ngo H, Tschudi C, Gull K, Ullu E (1998) Double-stranded RNA induces mRNA degradation in Trypanosoma brucei. Proc Natl Acad Sci U S A 95:14687–14692. CrossRefGoogle Scholar
  28. Paldi N, Glick E, Oliva M, Zilberberg Y, Aubin L, Pettis J, Chen Y, Evans JD (2010) Effective gene silencing in a microsporidian parasite associated with honeybee (Apis mellifera) colony declines. Appl Environ Microbiol 76:5960–5964. CrossRefGoogle Scholar
  29. Piot N, Snoeck S, Vanlede M, Smagghe G, Meeus I (2015) The effect of oral administration of dsRNA on viral replication and mortality in Bombus terrestris. Viruses 7:3172–3185. CrossRefGoogle Scholar
  30. Podlipaev S (2001) The more insect trypanosomatids under study-the more diverse Trypanosomatidae appears. Int J Parasitol 31:648–652. CrossRefGoogle Scholar
  31. Ravoet J, Maharramov J, Meeus I, De Smet L, Wenseleers T, Smagghe G, de Graaf DC (2013) Comprehensive bee pathogen screening in Belgium reveals Crithidia mellificae as a new contributory factor to winter mortality. PLoS One 8(8):e72443. CrossRefGoogle Scholar
  32. Robinson KA, Beverley SM (2003) Improvements in transfection efficiency and tests of RNA interference (RNAi) approaches in the protozoan parasite Leishmania. Mol Biochem Parasit 128(2):217–228. CrossRefGoogle Scholar
  33. Runckel C, DeRisi J, Flenniken ML (2014) A draft genome of the honey bee trypanosomatid parasite Crithidia mellificae. PLoS One 9(4):e95057. CrossRefGoogle Scholar
  34. Sannigrahi A, Maity P, Karmakar S, Chattopadhyay K (2017) Interaction of KMP-11 with phospholipid membranes and its implications in leishmaniasis: effects of single tryptophan mutations and cholesterol. J Phys Chem B 121:1824–1834. CrossRefGoogle Scholar
  35. Schmid-Hempel P, Schmid-Hempel R (1993) Transmission of a pathogen in Bombus terrestris, with a note on division of labour in social insects. Behav Ecol Sociobiol 33:319–327. CrossRefGoogle Scholar
  36. Schmid-Hempel R, Tognazzo M (2010) Molecular divergence defines two distinct lineages of Crithidia bombi (Trypanosomatidae), parasites of bumblebees. J Eukaryot Microbiol 57:337–345.
  37. Schmid-Hempel P, Aebi M, Barribeau S, Kitajima T, du Plessis L, Schmid-Hempel R, Zoller S (2018) The genomes of Crithidia bombi and C. expoeki, common parasites of bumblebees. PLoS One 13(1):e0189738. CrossRefGoogle Scholar
  38. Schwarz RS, Bauchan GR, Murphy CA, Ravoet J, Graaf DC, Evans JD (2015) Characterization of two species of trypanosomatidae from the honey bee Apis mellifera: Crithidia mellificae Langridge and McGhee, and Lotmaria passim n. gen., n. sp. J Eukaryot Microbiol 62:567–583. CrossRefGoogle Scholar
  39. Thomas M, Garcia-Perez J, Alonso C, Lopez M (2000) Molecular characterization of KMP11 from Trypanosoma cruzi: a cytoskeleton-associated protein regulated at the translational level. DNA and Cell Biol 19:47–57. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Faculty of Bioscience Engineering, Department of Plants and Crops, Lab of AgrozoologyGhent UniversityGhentBelgium

Personalised recommendations