Parasitology Research

, Volume 118, Issue 2, pp 517–538 | Cite as

Identification of the gene encoding the TATA box-binding protein-associated factor 1 (TAF1) and its putative role in the heat shock response in the protozoan parasite Entamoeba histolytica

  • Bartolo Avendaño-Borromeo
  • Ravi Kumar Narayanasamy
  • Guillermina García-Rivera
  • María Luisa Labra-Barrios
  • Anel E. Lagunes-Guillén
  • Bibiana Munguía-Chávez
  • Carlos Alberto Castañón-Sánchez
  • Esther Orozco
  • Juan Pedro Luna-AriasEmail author
Helminthology – Original Paper


Transcription factor IID (TFIID) is a cornerstone in the transcription initiation in eukaryotes. It is composed of TBP and approximately 14 different subunits named TBP-associated factors (TAFs). TFIID has a key role in transcription of many genes involved in cell proliferation, cell growth, cell cycle, cell cycle checkpoint, and various other processes as well. Entamoeba histolytica, the protozoan parasite responsible for human amoebiasis, represents a major global health concern. Our research group has previously reported the genes coding the TATA box-binding protein (EhTBP) and TBP-related factor 1 (EhTRF1), which displayed different mRNA levels in trophozoites under different stress conditions. In this work, we identified the TBP-associated factor 1 (Ehtaf1) gene in the E. histolytica genome, which possess a well-conserved DUF domain and a Bromo domain located in the middle and C-terminus of the protein, respectively. The EhTAF1-DUF domain tertiary structure is similar to the corresponding HsTAF1 DUF domain. RT-qPCR experiments with RNA isolated from trophozoites harvested at different time points of the growth curve and under different stress conditions revealed that the Ehtaf1 gene was found slightly upregulated in the death phase of growth curve, but under heat shock stress, it was found upregulated 10 times, suggesting that Ehtaf1 might have an important role in the heat shock stress response. We also found that EhTAF1 is expressed in the nucleus and cytoplasm at 37 °C, but under heat shock stress, it is overexpressed in both the nucleus and cytoplasm, and partially colocalized with EhHSP70 in cytoplasm.


Entamoeba histolytica TFllD TAF1 Heat shock stress Cloning 



The authors are grateful to Dr. Javier Cázares-Apátiga for his technical support in confocal microscopy experiments, Emmanuel Ríos-Castro MSc. for his technical support in MS analysis at the Unidad de Genómica, Proteómica y Metabolómica (UGPM), LaNSE, Cinvestav-IPN, and Cesar Isaac Bazán-Méndez for spelling and grammar review of manuscript.

Author contributions

BA-B, performed, designed the experiments, discussed the results, and wrote the manuscript; RKN, designed the experiments; GG-R, helped in some experiments with E. histolytica trophozoites, MLL-B, participated in the generation of antibodies and Western blots; AEL-G, performed the electron microscopy experiments; BCHM, designed and performed the electron microscopy experiments; CAC-S, discussed experiments and results; EO, supplied the E. histolytica strain and laboratory facilities for the development of some experiments; JPL-A, conducted experiments, discussed experiments and results, wrote and revised the manuscript.


We are grateful to the National Council of Science and Technology of Mexico (CONACyT) for the support to this work with the Grant number CB-2009-132020-B to Dr. Juan Pedro Luna-Arias, and for the PhD fellowship to Bartolo Avendaño Borromeo (CVU 229747).

Compliance with ethical standards

Ethics statement

Cinvestav fulfills the standard of the Mexican Official Norm (NOM-062-ZOO-1999) “Technical Specifications for the Care and Use of Laboratory Animals” based on the Guide for the Care and Use of Laboratory Animals “The Guide,” 2011, NRC, USA with the Federal Register Number BOO. The Institutional Animal Care and Use Committee (IACUC/ethics committee) from Cinvestav, as the regulatory office for the approval of research protocols involving the use of laboratory animals and in fulfillment of the Mexican Official Norm, has reviewed and approved all animal experiments.

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

436_2018_6170_MOESM1_ESM.docx (18 kb)
ESM 1 (DOCX 18 kb)
436_2018_6170_MOESM2_ESM.xlsx (14 kb)
ESM 2 (XLSX 13 kb)


  1. Ali IKM, Ehrenkaufer GM, Hackney JA, Singh U (2007) Growth of the protozoan parasite Entamoeba histolytica in 5-azacytidine has limited effects on parasite gene expression. BMC Genomics 8(1):7. CrossRefGoogle Scholar
  2. Ali IK, Clark CG, Petri WA (2008) Molecular epidemiology of amebiasis. Infect Genet Evol 8:698–707. CrossRefGoogle Scholar
  3. Anderson P, Kedersha N (2006) RNA granules. J Cell Biol 172(6):803–808. CrossRefGoogle Scholar
  4. Bieniossek C, Papai G, Schaffitzel C, Garzoni F, Chaillet M, Scheer E, Papadopoulos P, Tora L, Schultz P, Berger I (2013) The architecture of human general transcription factor TFIID core complex. Nature 493(7434):699–702. CrossRefGoogle Scholar
  5. Bowers B, Korn ED (1968) The fine structure of Acanthamoeba castellanii. J Cell Biol 39(1):95–111. CrossRefGoogle Scholar
  6. Brou C, Chaudhary S, Davidson I, Lutz Y, Wu J, Egly JM, Tora L, Chambon P (1993) Distinct TFIID complexes mediate the effect of different transcriptional activators. EMBO J 12(2):489–499CrossRefGoogle Scholar
  7. Bruchhaus I, Leippe M, Lioutas C, Tannich E (1993) Unusual gene organization in the protozoan parasite Entamoeba histolytica. DNA Cell Biol 12:925–933. CrossRefGoogle Scholar
  8. Burley SK, Roeder RG (1996) Biochemistry and structural biology of transcription factor IID (TFIID). Annu Rev Biochem 65:769–799. CrossRefGoogle Scholar
  9. Castañón-Sánchez CA, Luna-Arias JP, de Dios-Bravo MG, Herrera-Aguirre ME, Olivares-Trejo JJ, Orozco E et al (2010) Entamoeba histolytica: a unicellular organism containing two active genes encoding for members of the TBP family. Protein Expr Purif 70(1):48–59. CrossRefGoogle Scholar
  10. Chévez A, Segura M, Corona D, Iturbe-Alessio I (1972) Juxtanuclear spherules of Entamoeba histolytica. Morphological and dynamic study. Arch Invest Med (Mex) 2(Suppl 2):257–264Google Scholar
  11. Cler E, Papai G, Schultz P, Davidson I (2009) Recent advances in understanding the structure and function of general transcription factor TFIID. Cell Mol Life Sci 66(13):2123–2134. CrossRefGoogle Scholar
  12. Curran EC, Wang H, Hinds TR, Zheng N, Wang EH (2018) Zinc knuckle of TAF1 is a DNA binding module critical for TFIID promoter occupancy. Sci Rep 8:4630. CrossRefGoogle Scholar
  13. Das S, Lohia A (2002) Delinking of S phase and cytokinesis in the protozoan parasite Entamoeba histolytica. Cell Microbiol 4:55–60. CrossRefGoogle Scholar
  14. de Dios-Bravo G, Luna-Arias JP, Riverón AM, Olivares Trejo JJ, López Camarillo C, Orozco E (2005) Entamoeba histolytica TATA box binding protein binds to different TATA variants in vitro. FEBS J 272(6):1354–1366. CrossRefGoogle Scholar
  15. Diamond LS, Harlow DR, Cunnick CC (1978) A new medium for the axenic cultivation of Entamoeba histolytica and other Entamoeba. Trans R Soc Trop Med Hyg 72:431–432. CrossRefGoogle Scholar
  16. Dikstein R, Ruppert S, Tjian R (1996) TAFII250 is a bipartite protein kinase that phosphorylates the base transcription factor RAP74. Cell 84(5):781–790. CrossRefGoogle Scholar
  17. Dynlacht BD, Hoey T, Tjian R (1991) Isolation of coactivators associated with the TATA-binding protein that mediate transcriptional activation. Cell 66(3):563–576. CrossRefGoogle Scholar
  18. Gangopadhyay SS, Ray SS, Kennady K, Pande G, Lohia A (1997) Heterogeneity of DNA content and expression of cell cycle genes in axenically growing Entamoeba histolytica HM1: IMSS clone A. Mol Biochem Parasitol 90:9–20. CrossRefGoogle Scholar
  19. Gegonne A, Weissman JD, Singer DS (2001) TAFII55 binding to TAFII250 inhibits its acetyltransferase activity. Proc Natl Acad Sci U S A 98(22):12432–12437. CrossRefGoogle Scholar
  20. Hantsche M, Cramer P (2017) Conserved RNA polymerase II initiation complex structure. Curr Opin Struct Biol 47:17–22. CrossRefGoogle Scholar
  21. Jacobson RH, Ladurner AG, King DS, Tjian R (2000) Structure and function of a human TAFII250 double bromodomain module. Science 288:1422–1425. CrossRefGoogle Scholar
  22. Juven-Gershon T, Kadonaga JT (2010) Regulation of gene expression via the core promoter and the basal transcriptional machinery. Dev Biol 339(2):225–229. CrossRefGoogle Scholar
  23. Kathryn L, Huisinga B, Pugh F (2004) A genome-wide housekeeping role for TFIID and a highly regulated stress-related role for SAGA in Saccharomyces cerevisiae. Mol Cell 13(4):573–585. CrossRefGoogle Scholar
  24. Katz S, Trebicz-Geffen M, Ankri S (2014) Stress granule formation in Entamoeba histolytica: cross-talk between EhMLBP, EhRLE3 reverse transcriptase and polyubiquitinated proteins. Cell Microbiol 16(8):1211–1223. CrossRefGoogle Scholar
  25. Kokubo T, Gong DW, Wootton JC, Horikoshi M, Roeder RG, Nakatani Y (1994) Molecular cloning of Drosophila TFIID subunits. Nature 367(6462):484–487. CrossRefGoogle Scholar
  26. Ladurner AG1, Inouye C, Jain R, Tjian R (2003) Bromodomains mediate an acetyl-histone encoded antisilencing function at heterochromatin boundaries. Mol Cell 11:365–376. CrossRefGoogle Scholar
  27. Lagrange T, Kapanidis AN, Tang H, Reinberg D, Ebright RH (1998) New core promoter element in RNA polymerase II-dependent transcription: sequence-specific DNA binding by transcription factor IIB. Genes Dev 12:34–44. CrossRefGoogle Scholar
  28. Lawit S, O'Grady K, Gurley W, Czarnecka Verner E (2007) Yeast two hybrid map of Arabidopsis TFIID. Plant Mol Biol 64:73–87. CrossRefGoogle Scholar
  29. Lee TI, Causton HC, Holstege FC, Shen WC, Hannett N, Jennings EG, Et a (2000) Redundant roles for the TFIID and SAGA complexes in global transcription. Nature 405(6787):701–704. CrossRefGoogle Scholar
  30. Levecke B, Dreesen L, Dorny P, Verweij JJ, Vercammen F, Casaert S, Vercruysse J, Geldhof P (2010) Molecular identification of Entamoeba spp. in captive nonhuman primates. J Clin Microbiol 48(8):2988–2990. CrossRefGoogle Scholar
  31. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C (T)). Methods 25(4):402–408. CrossRefGoogle Scholar
  32. Loftus B, Anderson I, Davies R, Alsmark UCM, Samuelson J, Amedeo P, Roncaglia P, Berriman M, Hirt RP, Mann BJ, Nozaki T, Suh B, Pop M, Duchene M, Ackers J, Tannich E, Leippe M, Hofer M, Bruchhaus I, Willhoeft U, Bhattacharya A, Chillingworth T, Churcher C, Hance Z, Harris B, Harris D, Jagels K, Moule S, Mungall K, Ormond D, Squares R, Whitehead S, Quail MA, Rabbinowitsch E, Norbertczak H, Price C, Wang Z, Guillén N, Gilchrist C, Stroup SE, Bhattacharya S, Lohia A, Foster PG, Sicheritz-Ponten T, Weber C, Singh U, Mukherjee C, el-Sayed NM, Petri WA, Clark CG, Embley TM, Barrell B, Fraser CM, Hall N (2005) The genome of the protist parasite Entamoeba histolytica. Nature 433:865–868. CrossRefGoogle Scholar
  33. Loomis MR, Britt JO Jr, Gendron AP, Holshuh HJ, Howard EB (1983) Hepatic and gastric amebiasis in black and white colobus monkeys. J Am Vet Med Assoc 183(11):1188–1191Google Scholar
  34. López-Casamichana M, Orozco E, Marchat LA, López-Camarillo C (2008) Transcriptional profile of the homologous recombination machinery and characterization of the EhRAD51 recombinase in response to DNA damage in Entamoeba histolytica. BMC Mol Biol 9:35. CrossRefGoogle Scholar
  35. Lorenzi HA, Puiu D, Miller JR, Brinkac LM, Amedeo P, Hall N, Caler EV (2010) New assembly, reannotation and analysis of the Entamoeba histolytica genome reveal new genomic features and protein content information. PLoS Negl Trop Dis 4:e716. CrossRefGoogle Scholar
  36. Luna-Arias JP, Hernandez-Rivas R, de Dios-Bravo G, Garcia J, Mendoza L, Orozco E (1999) The TATA-box binding protein of Entamoeba histolytica: cloning of the gene and location of the protein by immunofluorescence and confocal microscopy. Microbiol 145(1):33–40. CrossRefGoogle Scholar
  37. Manna D, Ehrenkaufer GM, Singh U (2014) Regulation of gene expression in the protozoan parasite Entamoeba invadens: identification of core promoter elements and promoters with stage-specific expression patterns. Int J Parasitol 44(11):837–845. CrossRefGoogle Scholar
  38. Martinez E, Kundu TK, Fu J, Roeder RG (1998) A human SPT3-TAFII31-GCN5-L acetylase complex distinct from transcription factor IID. J Biol Chem 273:23781–23785. CrossRefGoogle Scholar
  39. Matangkasombut O, Buratowski S (2003) Different sensitivities of bromodomain factors 1 and 2 to histone H4 acetylation. Mol Cell 11(2):353–363. CrossRefGoogle Scholar
  40. Matangkasombut O, Buratowski RM, Swilling NW, Buratowski S (2000) Bromodomain factor 1 corresponds to a missing piece of yeast TFIID. Genes Dev 14(8):951–962. Google Scholar
  41. Mizzen CA, Yang XJ, Kokubo T, Brownell JE, Bannister AJ, Owen-Hughes T et al (1996) The TAF (II) 250 subunit of TFIID has histone acetyltransferase activity. Cell 87(7):1261–1270. CrossRefGoogle Scholar
  42. Moqtaderi Z, Yale JD, Struhl K, Buratowski S (1996) Yeast homologues of higher eukaryotic TFIID subunits. Proc Natl Acad Sci U S A 93(25):14654–14658. CrossRefGoogle Scholar
  43. Nagy Z, Tora L (2007) Distinct GCN5/PCAF-containing complexes function as co-activators and are involved in transcription factor and global histone acetylation. Oncogene 26:5341–5357. CrossRefGoogle Scholar
  44. Narayanasamy RK, Castañón-Sanchez CA, Luna-Arias JP, García-Rivera G, Avendaño-Borromeo B, Labra-Barrios ML, Valdés J, Herrera-Aguirre ME, Orozco E (2018) The Entamoeba histolytica TBP and TRF1 transcription factors are GAAC-box binding proteins, which display differential gene expression under different stress stimuli and during the interaction with mammalian cells. Parasit Vectors 11(1):153. CrossRefGoogle Scholar
  45. Ogryzko VV, Kotani T, Zhang X, Schiltz RL, Howard T, Yang XJ, Howard BH, Qin J, Nakatani Y (1998) Histone-like TAFs within the PCAF histone acetylase complex. Cell 94:35–44. CrossRefGoogle Scholar
  46. Orozco E, Guarneros G, Martinez-Palomo A, Sánchez T (1983) Entamoeba histolytica. Phagocytosis as a virulence factor. J Exp Med 158(5):1511–1521. CrossRefGoogle Scholar
  47. Papai G, Tripathi MK, Ruhlmann C, Werten S, Crucifix C, Weil PA, Schultz P (2009) Mapping the initiator binding Taf2 subunit in the structure of hydrated yeast TFIID. Structure 17(3):363–373. CrossRefGoogle Scholar
  48. Poon D, Weil PA (1993) Immunopurification of yeast TATA-binding protein and associated factors. J Biol Chem 268(21):15325–15328Google Scholar
  49. Purdy JE, Lana TP, Mann BJ, Petri WA (1996) Upstream regulatory elements controlling expression of the Entamoeba histolytica lectin. Mol Biochem Parasitol 78:91–103. CrossRefGoogle Scholar
  50. Ralston KS, Solga MD, Mackey-Lawrence NM, Somlata BA, Petri WA (2014) Trogocytosis by Entamoeba histolytica contributes to cell killing and tissue invasion. Nature 508:526–530. CrossRefGoogle Scholar
  51. Ravdin JI, Guerrant RL (1981) Role of adherence in cytopathogenic mechanisms of Entamoeba histolytica. Study with mammalian tissue culture cells and human erythrocytes. J Clin Invest 68:1305–1313. CrossRefGoogle Scholar
  52. Reese JC, Apone L, Walker SS, Griffin LA, Green MR (1994) Yeast TAFIIS in a multisubunit complex required for activated transcription. Nature 371(6497):523–527. CrossRefGoogle Scholar
  53. Ruppert S, Tjian R (1995) Human TAFII250 interacts with RAP74: implications for RNA polymerase II initiation. Genes Dev 9:2747–2755. CrossRefGoogle Scholar
  54. Ruppert S, Wang Edith H, Tjian R (1993) Cloning and expression of human TAFII250: a TBP-associated factor implicated in cell-cycle regulation. Nature 362:175–179. CrossRefGoogle Scholar
  55. Sekiguchi T, Miyata T, Nishimoto T (1988) Molecular cloning of the cDNA of human X chromosomal gene (CCG1) which complements the temperature-sensitive G1 mutants, tsBN462 and ts13, of the BHK cell line. EMBO J 1988(6):1683–1687CrossRefGoogle Scholar
  56. Sekiguchi T, Nohiro Y, Nakamura Y, Hisamoto N, Nishimoto T (1991) The human CCG1 gene, essential for progression of the G1 phase, encodes a 210-kilodalton nuclear DNA-binding protein. Mol Cell Biol 11(6):3317–3325. CrossRefGoogle Scholar
  57. Shrimal S, Bhattacharya S, Bhattacharya A (2010) Serum-dependent selective expression of EhTMKB1-9, a member of Entamoeba histolytica B1 family of transmembrane kinases. PLoS Pathog 6(6):e1000929. CrossRefGoogle Scholar
  58. Singh U, Rogers JB, Mann BJ, Petri WA (1997) Transcription initiation is controlled by three core promoter elements in the hgl5 gene of the protozoan parasite Entamoeba histolytica. Proc Natl Acad Sci U S A 94:8812–8817. CrossRefGoogle Scholar
  59. Singh U, Gilchrist CA, Schaenman JM, Rogers JB, Hockensmith JW, Mann BJ et al (2002) Context-dependent roles of the Entamoeba histolytica core promoter element GAAC in transcriptional activation and protein complex assembly. Mol Biochem Parasitol 120(1):107–116. CrossRefGoogle Scholar
  60. Steinbuch M, Audran R (1969) The isolation of IgG from mammalian sera with the aid of caprylic acid. Arch Biochem Biophys 134(2):279–284. CrossRefGoogle Scholar
  61. Tachibana H, Yanagi T, Lama C, Pandey K, Feng M, Kobayashi S, Sherchand JB (2013) Prevalence of Entamoeba nuttalli infection in wild rhesus macaques in Nepal and characterization of the parasite isolates. Parasitol Int 62(2):230–235. CrossRefGoogle Scholar
  62. Trowitzsch S, Viola C, Scheer E, Conic S, Chavant V, Fournier M et al (2015) Cytoplasmic TAF2-TAF8-TAF10 complex provides evidence for nuclear holo-TFIID assembly from preformed submodules. Nat Commun 14(6):6011. CrossRefGoogle Scholar
  63. Wang H, Curran EC, Hinds TR, Wang EH, Zheng N (2014) Crystal structure of a TAF1-TAF7 complex in human transcription factor IID reveals a promoter binding module. Cell Res 24(12):1433–1444. CrossRefGoogle Scholar
  64. Weber C, Guigon G, Bouchier C, Frangeul L, Moreira S, Sismeiro O, Gouyette C, Mirelman D, Coppee JY, Guillén N (2006) Stress by heat shock induces massive down regulation of genes and allows differential allelic expression of the Gal/GalNAc lectin in Entamoeba histolytica. Eukaryot Cell 5:871–875. CrossRefGoogle Scholar
  65. Weber C, Marchat LA, Guillén N, Lopez-Camarillo C (2009) Effects of DNA damage induced by UV irradiation on gene expression in the protozoan parasite Entamoeba histolytica. Mol Biochem Parasitol 164:165–169. CrossRefGoogle Scholar
  66. Weedall GD, Hall N (2011) Evolutionary genomics of Entamoeba. Res Microbiol 162(6):637–645. CrossRefGoogle Scholar
  67. Wieczorek E, Brand M, Jacq X, Tora L (1998) Function of TAF (II)-containing complex without TBP in transcription by RNA polymerase II. Nature 393:187–191. CrossRefGoogle Scholar
  68. Wright KJ, Marr MT 2nd, Tjian R (2006) TAF4 nucleates a core subcomplex of TFIID and mediates activated transcription from a TATA-less promoter. Proc Natl Acad Sci U S A 103(33):12347–12352. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Bartolo Avendaño-Borromeo
    • 1
  • Ravi Kumar Narayanasamy
    • 1
  • Guillermina García-Rivera
    • 2
  • María Luisa Labra-Barrios
    • 1
  • Anel E. Lagunes-Guillén
    • 2
  • Bibiana Munguía-Chávez
    • 2
  • Carlos Alberto Castañón-Sánchez
    • 3
  • Esther Orozco
    • 2
  • Juan Pedro Luna-Arias
    • 1
    Email author
  1. 1.Departamento de Biología CelularCinvestav-IPNCiudad de MéxicoMexico
  2. 2.Departamento de Infectómica y Patogénesis MolecularCinvestav-IPNCiudad de MéxicoMexico
  3. 3.Laboratorio de Investigación Biomédica, Subdirección de Enseñanza e InvestigaciónHospital Regional de Alta Especialidad de OaxacaOaxacaMexico

Personalised recommendations