Parasitology Research

, Volume 118, Issue 1, pp 203–217 | Cite as

Exploring the genetic diversity of Tylodelphys (Diesing, 1850) metacercariae in the cranial and body cavities of Mexican freshwater fishes using nuclear and mitochondrial DNA sequences, with the description of a new species

  • Ana L. Sereno-Uribe
  • Leopoldo Andrade-Gómez
  • Gerardo Pérez Ponce de León
  • Martín García-VarelaEmail author
Genetics, Evolution, and Phylogeny - Original Paper


Members of the genus Tylodelphys Diesing, 1850 are endoparasites of fish-eating birds, particularly ciconiids, anhingids, and podicipedids across the globe. Metacercariae of Tylodelphys spp. were collected from the cranial and body cavities of freshwater fishes in central and northern Mexico; adults were recovered from the intestine of two species of freshwater diving birds of the family Podicipedidae, commonly known as grebes, in two locations of central Mexico. Specimens were sequenced for two molecular markers, the internal transcribed spacers (ITS1 and ITS2) plus 5.8S gene of the nuclear ribosomal DNA and of the cytochrome c oxidase subunit 1 from mitochondrial DNA. The genetic divergence among the 25 samples (16 metacercariae and 9 adults) and between the newly sequenced specimens and those deposited in the GenBank were estimated. Maximum likelihood and Bayesian inference analyses inferred with each data set revealed the existence of five genetic lineages. Eight metacercariae analyzed in this study were nested in two divergent lineages previously recognized as Tylodelphys sp. 5 and Tylodelphys sp. 6 (sensu Locke et al., Int J Parasitol, 45:841–855, 2015). Five adult specimens recovered from the intestine of the least grebe (Tachybaptus dominicus Linnaeus, 1766) in Tecocomulco Lake, Hidalgo State, nested in a single clade with other sequences identified previously as Tylodelphys aztecae, expanding its distribution range in other areas of central Mexico. The isolates of the metacercariae found in the cranial cavity of the shortfin silverside, Chirostoma humboldtianum Valenciennes, 1835 from Zacapu Lake in central Mexico formed a monophyletic lineage and were recognized as an undescribed species of Tylodelphys. The lack of adult specimens of this lineage in our samples prevented a formal description. However, the metacercariae collected in the cranial cavity of the silverside, Chirostoma jordani Woolman, 1894 and the adult specimens recovered from the intestine of the western grebe, Aechmophorus occidentalis (Lawrence, 1858) from Cuitzeo Lake formed a monophyletic clade, allowing us to link both stages of the life cycle and to describe this as a new species, Tylodelphys kuerepus n. sp. The new species represents the eighth species of the genus described in the Americas and the fourth in the Nearctic region. We briefly discuss the ecological associations between the metacercariae and their second intermediate hosts in relation to the genetic diversity patterns uncovered in our study.


Digenea Tylodelphys Central Mexico Species description Cox 1 ITS 



We thank Luis García Prieto for providing specimens deposited at the CNHE, Berenit Mendoza for her help in obtaining the scanning electron microphotographs, and Laura Márquez for her help with the automatic sequencer. Specimens were collected under the Cartilla Nacional de Colector Científico (FAUT 0202 and 0057) issued by the Secretaría del Medio Ambiente y Recursos Naturales (SEMARNAT) to MGV and GPPL, respectively. The permission to use a shotgun to collect birds was issued by the Secretaría de la Defensa Nacional. This research was partially supported by grants from the Programa de Apoyo a Proyectos de Investigación e Inovación Tecnológica (PAPIIT-UNAM) IN206716 and IN202617 to MGV and GPPL, respectively; LAG thanks the support of the Programa de Posgrado en Ciencias Biológicas, UNAM, and CONACYT for granting a scholarship to complete his PhD program.


  1. Aguirre-Macedo ML, Scholz T, González-Solís D, Vidal-Martínez VM, Posel P, Arjona-Torres G, Dumailo S, Siu-Estrada E (2001) Some adult endohelminths parasitizing freshwater fishes from the Atlantic drainages of Nicaragua. Com Parasitol 68:190–195Google Scholar
  2. American Ornithologists' Union (AOU) (1998) Check-list of North American birds, 7th edition 829 pp. Washington, D.C.,Google Scholar
  3. Blasco-Costa I, Poulin R, Presswell B (2017) Morphological description and molecular analyses of Tylodelphys sp. (Trematoda: Diplostomidae) newly recorded from the freshwater fish Gobiomorphus cotidianus (common bully) in New Zealand. J Helminthol 91:332–345. CrossRefGoogle Scholar
  4. Bowles J, McManus DP (1993) Rapid discrimination of Echinococcus species and strains using a PCR-based method. Mol Biochem Parasitol 57:231–239CrossRefGoogle Scholar
  5. Briosio-Aguilar R, García-Varela M, Hernández-Mena DI, Rubio-Godoy M, Pérez Ponce de León G (2018) Morphological and molecular characterization of an enigmatic clinostomid trematode (Digenea: Clinostomidae) parasitic as metacercariae in the body cavity of freshwater fishes (Cichlidae) across Middle America. J Helminthol:17:1–17:1714.
  6. Chibwana FD, Blasco-Costa I, Goergieva S, Hosea KM, Nkwengulila G, Scholz T, Kostadinova A (2013) A first insight into the barcodes for African diplostomids (Digenea: Diplostomidae): brain parasites in Clarias gariepinus (Siluriformes: Clariidae). Infect Genet Evol 17:62–70. CrossRefGoogle Scholar
  7. Chibwana FD, Nkwengulila G, Locke SA, McLughlin JD, Marcogliese DJ (2015) Completion of the life cycle of Tylodelphys mashonense (Sudarikov, 1971) (Digenea: Diplostomidae) with DNA barcodes and rDNA sequences. Parasitol Res 114:3675–3682. CrossRefGoogle Scholar
  8. Choudhary A, Tripathi R, Gupta S, Singh HS (2017) First report on molecular evidence of Tylodelphys cerebralis (Diplostomum cerebralis) Chakrabarti, 1968 (Digenea: Diplostomidae) from snakehead fish Channa punctata. Acta Parasitol 62:386–392. Google Scholar
  9. Domínguez-Domínguez O, Pérez-Ponce de León G (2009) La mesa central de México es una provincia biogeográfica. Análisis descriptivo basado en componentes bióticos dulceacuícolas. Rev Mex Biodivers 80:835–852Google Scholar
  10. Drago FB, Lunaschi LI (2008) Description of a new species of Tylodelphys (Digenea, Diplostomidae) in the wood stork, Mycteria americana (Aves, Ciconiidae) from Argentina. Acta Parasitol 53:263–267. CrossRefGoogle Scholar
  11. Dubois G (1961) Le genre Diplostomum von Nordmann 1832 (Trematoda: Strigeida). Bull Soc Neuchâtel Sci Nat 84:113–124Google Scholar
  12. Dubois G (1969) Les Strigeata (Trematoda) de la collection Elizabeth M. Boyd. Bull Soc Neuchâtel Sci Nat 92:5–12Google Scholar
  13. Dubois G (1970) Synopsis des Strigeidae et des Diplostomatidae (Trematoda). Mem Soc Sci Nat Neuchatel 10:257–727Google Scholar
  14. Fernandes BMM, Justo MCN, Cárdenas MQ, Cohen SC (2015) South American trematodes parasites of birds and mammals. Oficina de Livros, Rio de JaneiroGoogle Scholar
  15. García-Varela M, Sereno-Uribe AL, Pinacho-Pinacho CD, Hernández-Cruz E, Pérez-Ponce de León G (2016) An integrative taxonomic study reveals a new species of Tylodelphys Diesing, 1850 (Digenea: Diplostomidae) in central and northern Mexico. J Helminthol 4:1–12. Google Scholar
  16. García-Varela M, Mendoza-Garfias B, Choudhury A, Pérez-Ponce de León G (2017) Morphological and molecular data for a new species of Pomphorhynchus Monticelli, 1905 (Acanthocephala: Pomphorhynchidae) in the Mexican redhorse Moxostoma austrinum Bean (Cypriniformes: Catostomidae) in central Mexico. Syst Parasitol 94:989–1006. CrossRefGoogle Scholar
  17. Guzmán-Cornejo M del C, García-Prieto L (1999) Trematodiasis en algunos peces del lago de lago de Cuitzeo, Michoacán, México. Rev Biol Trop 47:593–596 Google Scholar
  18. Howell SNG, Webb S (1995) A guide to the birds of Mexico and northern Central America. Oxford, New YorkGoogle Scholar
  19. Huelsenbeck JP, Ronquest F (2001) MrBayes: Bayesian inference of phylogeny. Biometrics 17:754–755Google Scholar
  20. King PH, Van AGJ (1997) Description of the adult and larval stages of Tylodelphys xenopi (Trematoda: Diplostomidae) from southern Africa. J Parasitol 83:287–295CrossRefGoogle Scholar
  21. León-Règagnón V (1992) Fauna helmintológica de algunos vertebrados acuáticos de la cienága de Lerma, Estado de México. An Inst Biol UNAM 63:151–153Google Scholar
  22. Lira-Guerrero G, García-Prieto L, Pérez Ponce de León G (2008) Helminth parasites of atherinopsid freshwater fishes (Osteichthyes:Atheriniformes) from central Mexico. Rev Mex Biodivers 79:325–331Google Scholar
  23. Locke SA, Al-Nasiri FS, Caffara M, Drago F, Kalven M, Lapierre AR, McLaughlin JD, Nie P, Overstreet RM, Souza GTR, Takemoto RM, Marcogliese DJ (2015) Diversity, specificity and speciation in larval Diplostomidae (Platyhelminthes: Digenea) in the eyes of freshwater fish, as revealed by DNA barcodes. Int J Parasitol 45:841–855. CrossRefGoogle Scholar
  24. López-Jimenez A, Pérez-Ponce de León G, García-Varela M (2017) Molecular data reveal high diversity of Uvulifer (Trematoda: Diplostomidae) in Middle America, with the description of a new species. J Helminthol 11:1–15. Google Scholar
  25. Lunaschi LI, Drago FB (2004) Descripción de una especie nueva de Tylodelphys (Digenea:Diplostomidae) parásita de Podiceps major (Aves: Podicepedidae) de Argentina. An Inst Biol UNAM 75:245–252Google Scholar
  26. Martínez-Aquino A, Mendoza-Palmero CA, Aguilar-Aguilar R, Pérez Ponce de León G (2014) Checklist of helminth parasites Goodeinae (Osteichthyes: Cyprinodontiformes: Goodeidae), an endemic subfamily of freshwater fishes from Mexico. Zootaxa 3856:151–191. CrossRefGoogle Scholar
  27. Miller RR, Minckley WL, Norris SM (2005) Freshwater fishes of Mexico. The University of Chicago PressGoogle Scholar
  28. Morrone J (2006) Biogeographical areas and transition zones of Latin America and the Caribbean island based on pan-biogeographic and cladistics analyses of the entomofauna. Ann Rev 51:467–494Google Scholar
  29. Moszczynska A, Locke SA, McLaughlin JD, Marcogliese DJ, Crease TJ (2009) Development of primers for the mitochondrial cytochrome c oxidase I gene in digenetic trematodes (Platyhelminthes) illustrates the challenge of barcoding parasitic helminthes. Mol Ecol Resour 9:75–82. CrossRefGoogle Scholar
  30. Muzall MP, Kilroy AL (2007) Tylodelphys scheuringi (Diplostomidae) infecting the brain of the central mudminnow, Umbrina limi, in Silver Creek, Michigan, U.S.A. Com Parasitol 74:164–166. CrossRefGoogle Scholar
  31. Niewiadomska K (2002) Family Diplostomidae Poirier, 1886. In: Gibson DI, Jones A, Bray RA (eds) Keys to the Trematoda, Vol. 1. CABI Publishing and London, The Natural History Museum, Wallingford, pp 167–196CrossRefGoogle Scholar
  32. Otachi EO, Locke SA, Jirsa F, Fellner-Frank C, Marcogliese DJ (2015) Morphometric and molecular analyses of Tylodelphys sp. metacercariae (Digenea:Diplostomidae) from the vitreous humour of four fish species from Lake Naivasha, Kenya. J Helminthol 4:1–11. Google Scholar
  33. Pérez Ponce de León G, García Prieto L, Mendoza Garfías B (2007) Trematode parasites (Platyhelminthes) of wildlife vertebrates in Mexico. Zootaxa 1534:1–247Google Scholar
  34. Pérez Ponce de León G, García-Varela M, Pinacho-Pinacho CD, Sereno-Uribe AL, Poulin R (2016) Species delimitation in trematodes using DNA sequences: Middle-American Clinostomum as a case study. Parasitol 143:1773–1789. CrossRefGoogle Scholar
  35. Pérez-Ponce de León G, Choudhury A (2005) Biogeography of helminth parasites of freshwater fishes in Mexico: the search for patterns and processes. J Biogeogr 32:645–659. CrossRefGoogle Scholar
  36. Pérez-Ponce de León G, Choudhury A (2010) Parasite inventories and DNA-based taxonomy: lessons from helminths of freshwater fishes in a megadiverse country. J Parasitol 96:236–244CrossRefGoogle Scholar
  37. Pinacho-Pinacho CD, García-Varela M, Hernández-Orts JS, Mendoza-Palmero CA, Sereno-Uribe AL, Martínez-Ramírez E, Andrade-Gómez L, López-Jiménez A, Hernández-Cruz E, Pérez-Ponce de León G (2015) Checklist of the helminth parasites of the genus Profundulus Hubbs, 1924 (Cyprinodontiformes, Profundulidae), an endemic family of freshwater fishes in Middle-America. Zookeys 523:1–30. CrossRefGoogle Scholar
  38. Pinacho-Pinacho CD, García-Varela M, Sereno-Uribe AL, Pérez-Ponce de León G (2018) A hyper-diverse genus of acanthocephalans revealed by tree-based and non-tree-based species delimitation methods: ten cryptic species of Neoechinorhynchus in Middle American freshwater fishes. Mol Phylogenet Evol 127:30–45. CrossRefGoogle Scholar
  39. Posada D, Crandall KA (2001) Selecting the best-fit model of nucleotide substitution. Syst Biol 50:580–601CrossRefGoogle Scholar
  40. Rambaut A (2006) FigTree v1.3.1. Institute of Evolutionary Biology. University of EdinburghGoogle Scholar
  41. Sandlund OT, Daverdin RH, Choudhury A, Brooks DR, Diserud HD (2010) A survey of freshwater fishes and their macroparasites in the Guanacaste Conservation Area (ACG), Costa Rica. Norwegian Institute for Nature Research (NINA) Report 635, TrondheimGoogle Scholar
  42. Stamatakis A (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22:2688–2690CrossRefGoogle Scholar
  43. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol Biol Evol 30:2725–2729CrossRefGoogle Scholar
  44. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F (1997) The Clustal windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Departamento de Zoología, Instituto de Biología, Universidad Nacional Autónoma de MéxicoCiudad UniversitariaMexicoMexico
  2. 2.Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de MéxicoCiudad UniversitariaMexicoMexico

Personalised recommendations