Parasitology Research

, Volume 118, Issue 1, pp 335–345 | Cite as

Berberine chloride mediates its antileishmanial activity by inhibiting Leishmania mitochondria

  • Sritama De Sarkar
  • Deblina Sarkar
  • Avijit Sarkar
  • Aishwarya Dighal
  • Katrin Staniek
  • Lars Gille
  • Mitali ChatterjeeEmail author
Treatment and Prophylaxis - Original Paper


Berberine chloride, a plant-derived isoquinoline alkaloid, has been demonstrated to have leishmanicidal activity, which is mediated by generation of a redox imbalance and depolarization of the mitochondrial membrane, resulting in a caspase-independent apoptotic-like cell death. However, its impact on mitochondrial function remains to be delineated and is the focus of this study. In UR6 promastigotes, berberine chloride demonstrated a dose-dependent increase in generation of reactive oxygen species and mitochondrial superoxide, depolarization of the mitochondrial membrane potential, a dose-dependent inhibition of mitochondrial complexes I–III and II–III, along with a substantial depletion of ATP, collectively suggesting inhibition of parasite mitochondria. Accordingly, the oxidative stress induced by berberine chloride resulting in an apoptotic-like cell death in Leishmania can be exploited as a potent chemotherapeutic strategy, mitochondria being a prime contributor.


Leishmania Promastigotes Mitochondria Reactive oxygen species (ROS) Mitochondrial superoxide Berberine chloride 



Adenosine triphosphate


Electron transport chain


Food and Drug Administration


Fetal bovine serum


Dichlorodihydrofluorescein diacetate


Inhibitory concentration50


Mitochondrial membrane potential


Nicotinamide adenine dinucleotide


NADH cytochrome c reductase


Neglected tropical diseases


Superoxide anion




Post kala-azar dermal leishmaniasis


Phenazine methosulfate


Reactive oxygen species


Succinate cytochrome c reductase




Funding information

The work was supported by the International Bilateral Cooperation Division, Dept. of Science & Technology (DST), Govt. of India [INT/AUSTRIA/BMWF/P-06/2017] & Austrian Exchange Office (OEAD) in the Scientific & Technological Cooperation project with India IN 04/2017, Austrian Science Fund (FWF), grant P 27814-B22; Fund for Improvement of S&T infrastructure in Universities and Higher Educational Institutions (FIST) Program, DST, Govt. of India, [SR/FST/LS1-049/2010] and [SR/FST/LS1-663/2016]; and Dept. of Health Research, Govt. of India, “Establishment of Multidisciplinary Research Unit” no: [V.25011/103/2016-HR].

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Ahuja A, Purohit SK, Yadav JS, Netra PR (1993) Cutaneous leishmaniasis in domestic dogs. Indian J Public Health 37:29–31Google Scholar
  2. Andrade-Neto VV, Cunha-Junior EF, Dos Santos Faioes V, Pereira TM, Silva RL, Leon LL, Torres-Santos EC (2018) Leishmaniasis treatment: update of possibilities for drug repurposing. Front Biosci (Landmark Ed) 23:967–996CrossRefGoogle Scholar
  3. Bahar M, Deng Y, Zhu X, He S, Pandharkar T, Drew ME, Navarro-Vázquez A, Anklin C, Gil RR, Doskotch RW, Werbovetz KA, Kinghorn AD (2011) Potent antiprotozoal activity of a novel semi-synthetic berberine derivative. Bioorg Med Chem Lett 21:2606–2610CrossRefGoogle Scholar
  4. Bradford M (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254CrossRefGoogle Scholar
  5. Brookes PS (2005) Mitochondrial H(+) leak and ROS generation: an odd couple. Free Radic Biol Med 38:12–23CrossRefGoogle Scholar
  6. Chandrasekaran S, Dayakar A, Veronica J, Sundar S, Maurya R (2013) An in vitro study of apoptotic like death in Leishmania donovani promastigotes by withanolides. Parasitol Int 62:253–261CrossRefGoogle Scholar
  7. Chang W, Zhang M, Chen L, Hatch GM (2017) Berberine inhibits oxygen consumption rate independent of alteration in cardiolipin levels in H9c2 cells. Lipids 52:961–967CrossRefGoogle Scholar
  8. Chen M, Zhai L, Christensen SB, Theander TG, Kharazmi A (2001) Inhibition of fumarate reductase in Leishmania major and L. donovani by chalcones. Antimicrob Agents Chemother 45:2023–2029CrossRefGoogle Scholar
  9. De Sarkar S, Sarkar D, Sarkar A, Dighal A, Chakrabarti S, Staniek K, Gille L, Chatterjee M (2018) The leishmanicidal activity of artemisinin is mediated by cleavage of the endoperoxide bridge and mitochondrial dysfunction. Parasitology 5:1–10.
  10. Dröse S, Brandt U (2008) The mechanism of mitochondrial superoxide production by the cytochrome bc1 complex. J Biol Chem 283:21649–21654CrossRefGoogle Scholar
  11. Dutta A, Sarkar D, Gurib-Fakim A, Mandal C, Chatterjee M (2008) In vitro and in vivo activity of Aloe vera leaf exudate in experimental visceral leishmaniasis. Parasitol Res 102:1235–1242CrossRefGoogle Scholar
  12. Faccenda D, Campanella M (2012) Molecular regulation of the mitochondrial F(1)F(o)-ATPsynthase: physiological and pathological significance of the inhibitory factor 1 (IF(1)). Int J Cell Biol 2012:367934CrossRefGoogle Scholar
  13. Fidalgo LM, Gille L (2011) Mitochondria and trypanosomatids: targets and drugs. Pharm Res 28:2758–2770CrossRefGoogle Scholar
  14. Flohé L, Hecht HJ, Steinert P (1999) Glutathione and trypanothione in parasitic hydroperoxide metabolism. Free Radic Biol Med 27:966–984CrossRefGoogle Scholar
  15. Ganguly S, Bandyopadhyay S, Sarkar A, Chatterjee M (2006) Development of a semi- automated colorimetric assay for screening antileishmanial agents. J Microbiol Methods 66:79–86CrossRefGoogle Scholar
  16. Getachew F, Gedamu L (2012) Leishmania donovani mitochondrial iron superoxide dismutase A is released into the cytosol during miltefosine induced programmed cell death. Mol Biochem Parasitol 183:42–51CrossRefGoogle Scholar
  17. Krauth-Siegel RL, Comini MA (2008) Redox control in trypanosomatids, parasitic protozoa with trypanothione-based thiol metabolism. Biochim Biophys Acta 1780:1236–1248CrossRefGoogle Scholar
  18. Lee I, Bender E, Arnold S, Kadenbach B (2001) New control of mitochondrial membrane potential and ROS formation--a hypothesis. Biol Chem 382:1629–1636CrossRefGoogle Scholar
  19. Lee N, Bertholet S, Debrabant A, Muller J, Duncan R, Nakhasi HL (2002) Programmed cell death in the unicellular protozoan parasite Leishmania. Cell Death Differ 9:53–64CrossRefGoogle Scholar
  20. Letasiová S, Jantová S, Cipák L, Múcková M (2006) Berberine-antiproliferative activity in vitro and induction of apoptosis/necrosis of the U937 and B16 cells. Cancer Lett 239:254–262CrossRefGoogle Scholar
  21. Li J, Liu F, Jiang S, Liu J, Chen X, Zhang S, Zhao H (2018) Berberine hydrochloride inhibits cell proliferation and promotes apoptosis of non-small cell lung cancer via the suppression of the MMP2 and Bcl-2/Bax signaling pathways. Oncol Lett 15:7409–7414Google Scholar
  22. Liu B, Wang G, Yang J, Pan X, Yang Z, Zang L (2011) Berberine inhibits human hepatoma cell invasion without cytotoxicity in healthy hepatocytes. PLoS One 6:e21416CrossRefGoogle Scholar
  23. Mailloux RJ, Harper ME (2011) Uncoupling proteins and the control of mitochondrial reactive oxygen species production. Free Radic Biol Med 51:1106–1115CrossRefGoogle Scholar
  24. Meeran SM, Katiyar S, Katiyar SK (2008) Berberine-induced apoptosis in human prostate cancer cells is initiated by reactive oxygen species generation. Toxicol Appl Pharmacol 229:33–43CrossRefGoogle Scholar
  25. Mehta A, Shaha C (2004) Apoptotic death in Leishmania donovani promastigotes in response to respiratory chain inhibition: complex II inhibition results in increased pentamidine cytotoxicity. J Biol Chem 279:11798–11813CrossRefGoogle Scholar
  26. Monzote L, García M, Pastor J, Gil L, Scull R, Maes L, Cos P, Gille L (2014) Essential oil from Chenopodium ambrosioides and main components: activity against Leishmania, their mitochondria and other microorganisms. Exp Parasitol 136:20–26CrossRefGoogle Scholar
  27. Monzote L, Geroldinger G, Tonner M, Scull R, De Sarkar S, Bergmann S, Bacher M, Staniek K, Chatterjee M, Rosenau T, Gille L (2018) Interaction of ascaridole, carvacrol, and caryophyllene oxide from essential oil of Chenopodium ambrosioides L. with mitochondria in Leishmania and other eukaryotes. Phytother Res 32:1729–1740CrossRefGoogle Scholar
  28. Monzote L, Lackova A, Staniek K, Cuesta-Rubio O, Gille L (2015) Role of mitochondria in the leishmanicidal effects and toxicity of acyl phloroglucinol derivatives: nemorosone and guttiferone A. Parasitology 142:1239–1248CrossRefGoogle Scholar
  29. Monzote L, Gille L (2010) Mitochondria as a promising antiparasitic target. Curr Clin Pharmacol 5:55–60CrossRefGoogle Scholar
  30. Monzote L, Lackova A, Staniek K, Steinbauer S, Pichle G, Jäger W, Gille L (2017) The antileishmanial activity of xanthohumol is mediated by mitochondrial inhibition. Parasitology 144:747–759CrossRefGoogle Scholar
  31. Mukhopadhyay S, Bhattacharyya S, Majhi R, De T, Naskar K, Majumdar S, Roy S (2000) Use of an attenuated leishmanial parasite as an immunoprophylactic and immunotherapeutic agent against murine visceral leishmaniasis. Clin Diagn Lab Immunol 7:233–240Google Scholar
  32. Nohl H, Gille L, Kozlov A (2003) Are mitochondria a spontaneous source of reactive oxygen species? Redox Rep 8:135–141CrossRefGoogle Scholar
  33. Pereira GC, Branco AF, Matos JA, Pereira SL, Parke D, Perkins EL, Serafim TL, Sardão VA, Santos MS, Moreno AJ, Holy J, Oliveira PJ (2007) Mitochondrially targeted effects of berberine [natural yellow 18, 5, 6-dihydro-9, 10-dimethoxybenzo(g)-1,3-benzodioxolo(5,6-a) quinolizinium] on K1735-M2 mouse melanoma cells: comparison with direct effects on isolated mitochondrial fractions. J Pharmacol Exp Ther 323:636–649CrossRefGoogle Scholar
  34. Polster BM, Nicholls DG, Ge SX, Roelofs BA (2014) Use of potentiometricfluorophores in the measurement of mitochondrial reactive oxygen species. Methods Enzymol 547:225–250CrossRefGoogle Scholar
  35. Rodrigues IA, Azevedo MM, Chaves FC, Bizzo HR, Corte-Real S, Alviano DS, Alviano CS, Rosa MS, Vermelho AB (2013) In vitro cytocidal effects of the essential oil from Croton cajucara (red sacaca) and its major constituent 7-hydroxycalamenene against Leishmania chagasi. BMC Complement Altern Med 13:249CrossRefGoogle Scholar
  36. Roy A, Ganguly A, Bose Dasgupta S, Das BB, Pal C, Jaisankar P, Majumder HK (2008) Mitochondria-dependent reactive oxygen species-mediated programmed cell death induced by 3, 3′-diindolylmethane through inhibition of F0F1-ATP synthase in unicellular protozoan parasite Leishmania donovani. Mol Pharmacol 74:1292–1307CrossRefGoogle Scholar
  37. Saha P, Mukhopadhyay D, Chatterjee M (2011a) Immunomodulation by chemotherapeutic agents against Leishmaniasis. Int Immunopharmacol 11:1668–1679CrossRefGoogle Scholar
  38. Saha P, Bhattacharjee S, Sarkar A, Manna A, Majumder S, Chatterjee M (2011b) Berberine chloride mediates its antileishmanial activity via differential regulation of the mitogen activated protein kinase pathway in macrophages. PLoS One 6:e18467CrossRefGoogle Scholar
  39. Saha P, Sen R, Hariharan C (2009) Berberine chloride causes a caspase-independent, apoptotic-like death in Leishmania donovani promastigotes. Free Radic Res 43:1101–1110CrossRefGoogle Scholar
  40. Sahibzada MUK, Sadiq A, Faidah HS, Khurram M, Amin MU, Haseeb A, Kaka M (2018) Berberine nanoparticles with enhanced in vitro bioavailability: characterization and antimicrobial activity. Drug Des Devel Ther 12:303–312CrossRefGoogle Scholar
  41. Sarkar A, Sen R, Saha P, Ganguly S, Mandal G, Chatterjee M (2008) An ethanolic extract of leaves of Piper betle (Paan) Linn mediates its antileishmanial activity via apoptosis. Parasitol Res 102:1249–1255CrossRefGoogle Scholar
  42. Sen N, Das BB, Ganguly A, Mukherjee T, Tripathi G, Bandyopadhyay S, Rakshit S, Sen T, Majumder HK (2004) Camptothecin induced mitochondrial dysfunction leading to programmed cell death in unicellular hemoflagellate Leishmania donovani. Cell Death Differ 11:924–936CrossRefGoogle Scholar
  43. Sen R, Chatterjee M (2011) Plant derived therapeutics for the treatment of Leishmaniasis. Phytomedicine 18:1056–1069CrossRefGoogle Scholar
  44. Sen R, Bandyopadhyay S, Dutta A, Mandal G, Ganguly S, Saha P, Chatterjee M (2007) Artemisinin triggers induction of cell-cycle arrest and apoptosis in Leishmania donovani promastigotes. J Med Microbiol 56:1213–1218CrossRefGoogle Scholar
  45. Sen R, Ganguly S, Saha P, Chatterjee M (2010) Efficacy of artemisinin in experimental visceral leishmaniasis. Int J Antimicrob Agents 36:43–49CrossRefGoogle Scholar
  46. Shadab M, Jha B, Asad M, Deepthi M, Kamran M, Ali N (2017) Apoptosis-like cell death in Leishmania donovani treated with KalsomeTM10, a new liposomal amphotericin B. PLoS One 12:e0171306CrossRefGoogle Scholar
  47. Tillhon M, Guamán Ortiz LM, Lombardi P, Scovassi AI (2012) Berberine: new perspectives for old remedies. Biochem Pharmacol 84:1260–1267CrossRefGoogle Scholar
  48. Torres-Guerrero E, Quintanilla-Cedillo MR, Ruiz-Esmenjaud J, Arenas R (2017) Leishmaniasis: a review. F1000Res 6:750 eCollection 2017 CrossRefGoogle Scholar
  49. Turner N, Li JY, Gosby A, To SW, Cheng Z, Miyoshi H, Taketo MM, Cooney, GJ, Kraegen EW, James DE, Hu LH, Li J, Ye JM (2008) Berberine and its more biologically available derivative, dihydroberberine, inhibit mitochondrial respiratory complex I: a mechanism for the action of berberine to activate AMP-activated protein kinase and improve insulin action. Diabetes 57:1414–1418Google Scholar
  50. Upegui Y, Gil JF, Quiñones W, Torres F, Escobar G, Robledo SM, Echeverri F (2014) Preparation of rotenone derivatives and in vitro analysis of their antimalarial, antileishmanial and selective cytotoxic activities. Molecules 19:18911–18922CrossRefGoogle Scholar
  51. van Assche T, Deschacht M, da Luz RA, Maes L, Cos P (2011) Leishmania-macrophage interactions: insights into the redox biology. Free Radic Biol Med 51:337–351CrossRefGoogle Scholar
  52. Vennerstrom JL, Lovelace JK, Waits VB, Hanson WL, Klayman DL (1990) Berberine derivatives as antileishmanial drugs. Antimicrob Agents Chemother 34:918–921CrossRefGoogle Scholar
  53. Wan CP, Myung E, Lau BH (1993) An automated micro-fluorometric assay for monitoring oxidative burst activity of phagocytes. J Immunol Methods 159:131–138CrossRefGoogle Scholar
  54. World Health Organization. Leishmaniasis.; (last accessed on 11th October, 2018)
  55. Yan XJ, Yu X, Wang XP, Jiang JF, Yuan ZY, Lu X, Lei F, Xing DM (2017) Mitochondria play an important role in the cell proliferation suppressing activity of berberine. Sci Rep 7:41712CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Sritama De Sarkar
    • 1
  • Deblina Sarkar
    • 1
  • Avijit Sarkar
    • 1
  • Aishwarya Dighal
    • 1
  • Katrin Staniek
    • 2
  • Lars Gille
    • 2
  • Mitali Chatterjee
    • 1
    Email author
  1. 1.Department of PharmacologyInstitute of Post Graduate Medical Education and ResearchKolkataIndia
  2. 2.Institute of Pharmacology and Toxicology, Department of Biomedical SciencesUniversity of Veterinary MedicineViennaAustria

Personalised recommendations