Parasitology Research

, Volume 118, Issue 2, pp 687–692 | Cite as

Comparison of different staining methods for determination of viability on Mesocestoides vogae tetrathyridia

  • Julia Fabbri
  • María Celina ElissondoEmail author
Helminthology - Short Communication


Mesocestoides vogae is widely employed as a model for studying the biology, differentiation, and experimental chemotherapy of cestodes. Currently, there are few techniques to measure the viability of M. vogae metacestodes during pharmacological experiments. The aim of the present work was to evaluate and compare different staining techniques to determine objectively the viability of M. vogae tetrathyridia. Eosin (0.05% w/v), methylene blue (0.01% w/v), propidium iodide (PI, 2 μg/ml), and fluorescein diacetate (FDA, 0.5 μg/ml) solutions were tested against live, heat-killed (cultivated at 65 °C for 2 h) and thymol-treated tetrathyridia (50 and 250 μg/ml). Parasites were counted under a dissecting microscope or a fluorescence compound microscope, as appropriate. Studies by scanning electron microscope were performed to compare the ultrastructural damage with the viability of parasites. After comparing the performance of different dyes, we chose the eosin staining technique because its simplicity, rapidity, sensitivity, low cost and fidelity.


Mesocestoides vogae Viability Eosin Methylene blue Propidium iodide Fluorescein diacetate 



The authors gratefully acknowledge the Instituto de Investigaciones Biológicas (IIB) CONICET—UNMdP for allowing us to use the fluorescence microscope. We also would like to thank Dr. Alejandra Goya (SENASA, Argentina) and Dr. Andrea Chisari (UNMdP) for their cooperation.


This study was financially supported by the PICT 15 No. 0717 (ANPCyT, Argentina) and EXA 769/16 and EXA 871/18 (Universidad Nacional de Mar del Plata, Argentina).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

Animal procedures and management protocols were approved by the Institutional Animal Care and Use Committee (RD 148/15) of the Faculty of Exact and Natural Sciences, National University of Mar del Plata, Mar del Plata, Argentina and carried out in accordance with the revised form of The Guide for the Care and Use of Laboratory Animals (National Research Council US 2011). Unnecessary animal suffering was avoided throughout the study.


  1. Basika T, Macchiaroli N, Cucher M, Espínola S, Kamenetzky L, Zaha A, Rosenzvit M, Ferreira HB (2016) Identification and profiling of microRNAs in two developmental stages of the model cestode parasite Mesocestoides corti. Mol Biochem Parasitol 210(1–2):37–49. CrossRefGoogle Scholar
  2. Becker B, Mehlhorn H, Andrews P, Thomas H (1981) Ultrastructural investigations on the effect of praziquantel on the tegument of five species of cestodes. Z Parasitenkd 64(3):257–269. CrossRefGoogle Scholar
  3. Camicia F, Celentano AM, Johns ME, Chan JD, Maldonado L, Vaca H, Di Siervi N, Kamentezky L, Gamo AM, Ortega-Gutierrez S, Martin-Fontecha M (2018). Unique pharmacological properties of serotoninergic G-protein coupled receptors from cestodes. PLoS Neglect Trop D 12(2):, e0006267
  4. Canclini L, Esteves A (2009) In vivo response of Mesocestoides vogae to human insulin. Parasitology 136(2):203–209. CrossRefGoogle Scholar
  5. de Lima JC, Monteiro KM, Cabrera TNB, Paludo GP, Moura H, Barr JR, Zaha A, Ferreira HB (2018) Comparative proteomics of the larval and adult stages of the model cestode parasite Mesocestoides corti. J Proteome 175:127–135. CrossRefGoogle Scholar
  6. Elissondo MC, Dopchiz MC, Brasesco M, Denegri G (2004) Echinococcus granulosus: first report of microcysts formation from protoscoleces of cattle origin using the in vitro vesicular culture technique. Parasite 11(4):415–418. CrossRefGoogle Scholar
  7. Etges FJ (1991) The proliferative tetrathyridium of Mesocestoides vogae sp. n. (Cestoda). J Helminthol Soc Washington 58(2):181–185Google Scholar
  8. Hrčková G, Velebný S, Corba J (1998) Effects of free and liposomized praziquantel on the surface morphology and motility of Mesocestoides vogae tetrathyridia (syn. M. corti; Cestoda: Cyclophyllidea) in vitro. Parasitol Res 84(3):230–238. CrossRefGoogle Scholar
  9. Maggiore M, Elissondo MC (2014) In vitro cestocidal activity of thymol on Mesocestoides corti tetrathyridia and adult worms. Interdiscip Perspect Infect Dis Article ID 268135, 8 pages:1–8. Google Scholar
  10. Markoski MM, Bizarro CV, Farias S, Espinoza I, Galanti N, Zaha A, Ferreira HB (2003) In vitro segmentation induction of Mesocestoides corti (Cestoda) tetrathyridia. J Parasitol 89(1):27–34.[0027:IVSIOM]2.0.CO;2Google Scholar
  11. McAllister CT, Tkach VV, Conn DB (2018) Morphological and molecular characterization of post-larval pre-tetrathyridia of Mesocestoides sp. (Cestoda: Cyclophyllidea) from ground skink, Scincella lateralis (Sauria: Scincidae), from southeastern Oklahoma. J Parasitol 104(3):246–253. CrossRefGoogle Scholar
  12. Mishra PK, Li Q, Munoz LE, Mares CA, Morris EG, Teale JM, Cardona AE (2016) Reduced leukocyte infiltration in absence of eosinophils correlates with decreased tissue damage and disease susceptibility in ΔdblGATA mice during murine neurocysticercosis. PLoS Neglect Trop D 10(6):e0004787. CrossRefGoogle Scholar
  13. Moazeni M, Borji H, Darbandi MS, Saharkhiz MJ (2017) In vitro and in vivo antihydatid activity of a nano emulsion of Zataria multiflora essential oil. Res Vet Sci 114:308–312. CrossRefGoogle Scholar
  14. National Research Council US (2011) Guide for the care and use of laboratory animals, 8th edition. National Academies Press, US, Washington DC ISBN-13: 978–0- 309–15400-0 ISBN-10: 0–309–15400–6Google Scholar
  15. Peak E, Chalmers IW, Hoffmann KF (2010) Development and validation of a quantitative, high-throughput, fluorescent-based bioassay to detect Schistosoma viability. PLoS Neglect Trop D 4(7):e759. CrossRefGoogle Scholar
  16. Saldaña J, Casaravilla C, Marín M, Fernández C, Domínguez L (2003) The toxicity of praziquantel against Mesocestoides vogae (syn. corti) tetrathyridia can be assessed using a novel in vitro system. Parasitol Res 89(6):467–472. Google Scholar
  17. Specht D, Voge M (1965) Asexual multiplication of Mesocestoides tetrathyridia in laboratory animals. J Parasitol 51:268–272. CrossRefGoogle Scholar
  18. Voge M, Coulombe LS (1966) Growth and asexual multiplication in vitro of Mesocestoides tetrathyridia. Am J Trop Med Hyg 15(6):902–907. CrossRefGoogle Scholar
  19. Zarlenga DS, Hoberg EP, Detwiler JT (2016) Diversity and history as drivers of helminth systematics and biology. In: Bruschi F (ed) Helminth infections and their impact on global public health, Springer, Viena, pp 1–28.

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Laboratorio de Zoonosis Parasitarias, Instituto de Investigaciones en Producción, Sanidad y Ambiente (IIPROSAM), Facultad de Ciencias Exactas y NaturalesUniversidad Nacional de Mar del Plata (UNMdP)Mar del PlataArgentina
  2. 2.Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)Buenos AiresArgentina

Personalised recommendations