Parasitology Research

, Volume 118, Issue 1, pp 169–180 | Cite as

Filling gaps in the microsporidian tree: rDNA phylogeny of Chytridiopsis typographi (Microsporidia: Chytridiopsida)

  • Daniele CorsaroEmail author
  • Claudia Wylezich
  • Danielle Venditti
  • Rolf Michel
  • Julia Walochnik
  • Rudolf Wegensteiner
Genetics, Evolution, and Phylogeny - Original Paper


Microsporidia are intracellular eukaryotic parasites of animals, characterized by unusual morphological and genetic features. They can be divided in three main groups, the classical microsporidians presenting all the features of the phylum and two putative primitive groups, the chytridiopsids and metchnikovellids. Microsporidia originated from microsporidia-like organisms belonging to a lineage of chytrid-like endoparasites basal or sister to the Fungi. Genetic and genomic data are available for all members, except chytridiopsids. Herein, we filled this gap by obtaining the rDNA sequence (SSU-ITS-partial LSU) of Chytridiopsis typographi (Chytridiopsida), a parasite of bark beetles. Our rDNA molecular phylogenies indicate that Chytridiopsis branches earlier than metchnikovellids, commonly thought ancestral, forming the more basal lineage of the Microsporidia. Furthermore, our structural analyses showed that only classical microsporidians present 16S-like SSU rRNA and 5.8S/LSU rRNA gene fusion, whereas the standard eukaryote rRNA gene structure, although slightly reduced, is still preserved in the primitive microsporidians, including 18S-like SSU rRNA with conserved core helices, and ITS2-like separating 5.8S from LSU. Overall, our results are consistent with the scenario of an evolution from microsporidia-like rozellids to microsporidians, however suggesting for metchnikovellids a derived position, probably related to marine transition and adaptation to hyperparasitism. The genetic and genomic data of additional members of Chytridiopsida and Rozellomycota will be of great value, not only to resolve phylogenetic relationships but also to improve our understanding of the evolution of these fascinating organisms.


Microsporidia Chytridiopsida Chytridiopsis Rozellomycota Microsporidia-like organisms 


Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

436_2018_6130_MOESM1_ESM.pdf (791 kb)
Suppl. Fig. 1 Secondary structure of the SSU rRNA of Amphiacantha sp. (ex Lecudina cf. elongata). The sequence was retrieved from GenBank (ID KX214676). Both the 5′- and 3′-ends are lacking. (PDF 791 kb)
436_2018_6130_MOESM2_ESM.pdf (168 kb)
Suppl. Fig. 2 Secondary structure of the SSU rRNA of Amphiamblys sp. WSBS2006 (ex Ancora sagittata). The sequence was retrieved from GenBank (ID KX214672). (PDF 167 kb)


  1. Bass D, Czech L, Williams BAP, Berney C, Dunthorn M, Mahé F, Torruella G, Stentiford GD, Williams TA (2018) Clarifying the relationships between microsporidia and Cryptomycota. J Eukaryot Microbiol.
  2. Beard CB, Butler JF, Becnel JJ (1990) Nolleria pulicis n. gen., n. sp. (microsporidia: Chytridiopsidae), a microsporidian parasite of the cat flea, Ctenocephalides felis (Siphonaptera: Pulicidae). J Protozool 37(2):90–99. CrossRefGoogle Scholar
  3. Blackwell WH, Letcher PM, Powell MJ (2016) Reconsideration of the inclusiveness of genus Plasmophagus (Chytridiomycota, posteris traditus) based on morphology. Phytologia 98(2):128–136Google Scholar
  4. Blackwell WH, Letcher PM, Powell MJ (2017) The taxa of Dictyomorpha (Chytridiomycota, in praesens tempus). Phytologia 99(1):77–82Google Scholar
  5. Burke JM (1970) A microsporidian in the epidermis of Eisenia foetida (Oligochaeta). J Invertebr Pathol 16(1):145–147. CrossRefGoogle Scholar
  6. Canning EU, Refardt D, Vossbrinck CR, Okamura B, Curry A (2002) New diplokaryotic microsporidia (phylum microsporidia) from freshwater bryozoans (Bryozoa, Phylactolaemata). Eur J Protistol 38(3):247–266. CrossRefGoogle Scholar
  7. Coleman AW (2007) Pan-eukaryote ITS-2 homologies revealed by RNA secondary structure. Nucleic Acids Res 35(10):3322–3329. CrossRefGoogle Scholar
  8. Corradi N (2015) Microsporidia: eukaryotic intracellular parasites shaped by gene loss and horizontal gene transfers. Annu Rev Microbiol 69:167–183. CrossRefGoogle Scholar
  9. Corsaro D, Walochnik J, Venditti D, Steinmann J, Müller KD, Michel R (2014a) Microsporidia-like parasites of amoebae belong to the early fungal lineage Rozellomycota. Parasitol Res 113(5):1909–1918. CrossRefGoogle Scholar
  10. Corsaro D, Walochnik J, Venditti D, Müller K-D, Hauröder B, Michel R (2014b) Rediscovery of Nucleophaga amoebae, a novel member of the Rozellomycota. Parasitol Res 113(12):4491–4498. CrossRefGoogle Scholar
  11. Corsaro D, Michel R, Walochnik J, Venditti D, Müller KD, Hauröder B, Wylezich C (2016) Molecular identification of Nucleophaga terricolae sp. nov. (Rozellomycota), and new insights on the origin of the microsporidia. Parasitol Res 115(8):3003–3011. CrossRefGoogle Scholar
  12. Cuomo CA, Desjardins CA, Bakowski MA, Goldberg J, Ma AT, Becnel JJ, Didier ES, Fan L, Heiman DI, Levin JZ, Young S, Zeng Q, Troemel ER (2012) Microsporidian genome analysis reveals evolutionary strategies for obligate intracellular growth. Genome Res 22(12):2478–2488. CrossRefGoogle Scholar
  13. Dangeard P-A (1895) Mémoire sur les parasites du noyau et du protoplasme. Le Botaniste 4:199–248Google Scholar
  14. Dawson SC, Pace NR (2002) Novel kingdom-level eukaryotic diversity in anoxic environments. Proc Natl Acad Sci U S A 99(12):8324–8329 CrossRefGoogle Scholar
  15. De Puytorac P, Tourret M (1963) Étude de kystes d’origine parasitaire (Microsporidies ou Grégarines) sur le parois interne du corps des vers Megascolecidae. Ann Parasitol (Paris) 38(6):861–874Google Scholar
  16. De Rijk P, Wuyts, De Wachter R (2003) RnaViz 2: an improved representation of RNA secondary structure. Bioinformatics 19(2):299–300CrossRefGoogle Scholar
  17. Franzen C (2004) Microsporidia: how can they invade other cells. Trends Parasitol 20(6):275–279. CrossRefGoogle Scholar
  18. Grossart HP, Wurzbacher C, James TY, Kagami M (2016) Discovery of dark matter fungi in aquatic ecosystems demands a reappraisal of the phylogeny and ecology of zoosporic fungi. Fungal Ecol 19:28–38. CrossRefGoogle Scholar
  19. Haag KL, James TY, Pombert JF, Larsson R, Schaer TM, Refardt D, Ebert D (2014) Evolution of a morphological novelty occurred before genome compaction in a lineage of extreme parasites. Proc Natl Acad Sci U S A 111(43):15480–15485. CrossRefGoogle Scholar
  20. Han B, Weiss LM (2017) Microsporidia: obligate intracellular pathogens within the fungal kingdom. Microbiol Spectrum 5(2):FUNK-0018-2016. Google Scholar
  21. James TY, Pelin A, Bonen L, Ahrendt S, Sain D, Corradi N, Stajich JE (2013) Shared signatures of parasitism and phylogenomics unite Cryptomycota and microsporidia. Curr Biol 23(16):1548–1553. CrossRefGoogle Scholar
  22. Jobb G, von Haeseler A, Strimmer K (2004) TREEFINDER: a powerful graphical analysis environment for molecular phylogenetics. BMC Evol Biol 4(18):18. CrossRefGoogle Scholar
  23. Katinka MD, Duprat S, Cornillot E, Méténier G, Thomarat F, Prensier G, Barbe V, Peyretaillade E, Brottier P, Wincker P, Delbac F, El Alaoui H, Peyret P, Saurin W, Gouy M, Weissenbach J, Vivarès CP (2001) Genome sequence and gene compaction of the eukaryote parasite Encephalitozoon cuniculi. Nature 414(6862):450–453. CrossRefGoogle Scholar
  24. Keeling PJ, Corradi N, Morrison HG, Haag KL, Ebert D, Weiss LM, Akiyoshi DE, Tzipori S (2010) The reduced genome of the parasitic microsporidian Enterocytozoon bieneusi lacks genes for core carbon metabolism. Genome Biol Evol 2:304–309. CrossRefGoogle Scholar
  25. Lanave C, Preparata G, Saccone C, Serio G (1984) A new method for calculating evolutionary substitution rates. J Mol Evol 20(1):86–93. CrossRefGoogle Scholar
  26. Larsson JIR (1980) Insect pathological investigations on Swedish Thysanura. II. A new microsporidian parasite of Petrobius brevistylis (Microcoryphia, Machilidae): description of the species and creation of two new genera and a new family. Protistologica 16:85–101Google Scholar
  27. Larsson (1993) Description of Chytridiopsis trichopterae N. Sp. (Microspora, Chytridiopsidae), a microsporidian parasite of the caddis fly Polycentropus flavomaculatus (Trichoptera, Polycentropodidae), with comments on relationships between the families Chytridiopsidae and Metchnikovellidae. J Eukaryot Microbiol 40(1):37–48. CrossRefGoogle Scholar
  28. Larsson JIR (2000) The hyperparasitic microsporidium Amphiacantha longa Caullery et Mesnil, 1914 (Microspora: Metchnikovellidae) - description of the cytology, redescription of the species, emended diagnosis of the genus Amphiacantha and establishment of the new family Amphiacanthidae. Folia Parasitol 47(4):241–256CrossRefGoogle Scholar
  29. Larsson JIR (2014) The primitive microsporidia. In: Weiss LM, Becnel JJ (eds) Microsporidia: pathogens of opportunity. Wiley, Chichester, pp 605–634Google Scholar
  30. Larsson JIR, Køie M (2006) The ultrastructure and reproduction of Amphiamblys capitellides (Microspora, Metchnikovellidae), a parasite of the gregarine Ancora sagittata (Apicomplexa, Lecudinidae), with redescription of the species and comments on the taxonomy. Eur J Protistol 42(4):233–248. CrossRefGoogle Scholar
  31. Larsson JIR, Steiner MY, Bjørnson S (1997) Intexta acarivora gen. Et sp. n. (Microspora: Chytridiopsidae) – ultrastructural study and description of a new microsporidian parasite of the forage mite Tyrophagus putrescentiae (Acari: acaridae). Acta Protozool 36(4):295–304Google Scholar
  32. Lubinsky G (1955) On some parasites of parasitic protozoa: II. Sagittospora cameroni gen. n., sp. n.—a phycomycete parasitizing Ophryoscolecidae. Can J Microbiol 1(8):675–684. CrossRefGoogle Scholar
  33. Manier J-F, Ormieres R (1968) Ultrastructure de quelques stades de Chytridiopsis socius Schn., parasite de Blaps lethifera Marsh. (Coleopt., Tenebr.). Protistologica 4:181–185Google Scholar
  34. Mikhailov KV, Simdyanov TG, Aleoshin VV (2016) Genomic survey of a hyperparasitic microsporidian Amphiamblys sp. (Metchnikovellidae). Genome Biol Evol 9(3):454–467. Google Scholar
  35. Morris DJ, Terry RS, Ferguson KB, Smith JE, Adams A (2005) Ultrastructural and molecular characterization of Bacillidium vesiculoformis n. sp. (Microspora: Mrazekiidae) in the freshwater oligochaete Nais simplex (Oligochaeta: Naididae). Parasitology 130(1):31–40CrossRefGoogle Scholar
  36. Purrini K, Weiser J (1985) Ultrastructural study of the microsporidian Chytridiopsis typographi (Chytridiopsida: Microspora) infecting the bark beetle Ips typographus (Scolytidae:Coleoptera), with new data on spore dimorphism. J Invertebr Pathol 45(1):66–74. CrossRefGoogle Scholar
  37. Quandt CA, Beaudet D, Corsaro D, Walochnik J, Michel R, Corradi N, James TY (2017) The genome of an intranuclear parasite, Paramicrosporidium saccamoebae, reveals alternative adaptations to obligate intracellular parasitism. eLife 6:e29594. CrossRefGoogle Scholar
  38. Radek R, Kariton M, Dabert J, Alberti G (2015) Ultrastructural characterization of Acarispora falculifera n.gen., n.sp., a new microsporidium (Opisthokonta: Chytridiopsida) from the feather mite Falculifer rostratus (Astigmata: Pterolichoidea). Acta Parasitol 60(2):200–210. CrossRefGoogle Scholar
  39. Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19(12):1572–1574. CrossRefGoogle Scholar
  40. Sokolova YY, Kryukova NA, Glupov VV, Fuxa JR (2006) Systenostrema alba Larsson 1988 (microsporidia, Thelohaniidae) in the dragonfly Aeshna viridis (Odonata, Aeshnidae) from South Siberia: morphology and molecular characterization. J Eukaryot Microbiol 53(1):49–57. CrossRefGoogle Scholar
  41. Sokolova YY, Paskerova GG, Rorati YM, Nassonova ES, Smirnov AV (2013) Fine structure of Metchnikovella incurvata Caullery and Mesnil 1914 (microsporidia), a hyperparasite of gregarines Polyrhabdina sp. from the polychaete Pygospio elegans. Parasitology 140(7):855–867. CrossRefGoogle Scholar
  42. Sokolova YY, Paskerova GG, Rotari YM, Nassonova ES, Smirnov AV (2014) Description of Metchnikovella spiralis sp. n. (microsporidia: Metchnikovellidae), with notes on the ultrastructure of metchnikovellids. Parasitology 141(8):1108–1122. CrossRefGoogle Scholar
  43. Sparrow FK Jr (1960) Aquatic Phycomycetes, 2nd edn. The University of Michigan Press, Ann ArborGoogle Scholar
  44. Sprague V (1977) Classification and phylogeny of the microsporidia. In: Bulla LA, Cheng TC (eds) Comparative pathobiology, Systematics of the microsporidia, vol 2. Plenum Press, New York, pp 1–30Google Scholar
  45. Stentiford GD, Ramilo A, Abollo E, Kerr R, Bateman KS, Feist SW, Bass D, Villalba A (2017) Hyperspora aquatica n. gn., n. sp. (microsporidia), hyperparasitic in Marteilia cochillia (Paramyxida), is closely related to crustacean-infecting microspordian taxa. Parasitology 144(2):186–199. CrossRefGoogle Scholar
  46. Thélohan P (1894) Sur la présence d’une capsule à filament dans les spores microsporidies. C R Acad Ac Paris 118:1425–1427Google Scholar
  47. Tsaousis AD, Kunji ERS, Goldberg AV, Lucocq JM, Hirt RP, Embley TM (2008) A novel route for ATP acquisition by the remnant mitochondria of Encephalitozoon cuniculi. Nature 453(7194):553–556. CrossRefGoogle Scholar
  48. Vaughn JC, Sperbeck S, Ramsey WJ, Lawrence CB (1984) A universal model for the secondary structure of 5.8S ribosomal RNA molecules, their contact sites with 28S ribosomal RNAs, and their prokaryotic equivalent. Nucleic Acids Res 12(19):7479–7502CrossRefGoogle Scholar
  49. Vávra J, Lukeš J (2013) Microsporidia and ‘the art of living together’. Adv Parasitol 82:253–319. CrossRefGoogle Scholar
  50. Vivier E (1965) Étude, au microscope électronique, de la spore de Metchnikovella hovassei n. sp.: appartenance des Metchnikovellidae aux Microsporidies. C R Seances Soc Biol Paris 260:6982–6984Google Scholar
  51. Wegensteiner R, Weiser J (1996) Occurrence of Chytridiopsis typographi (Microspora, Chytridiopsida) in Ips typographus L. (Coleoptera, Scolytidae) field populations and in a laboratory stock. J Appl Entomol 120:595–602. CrossRefGoogle Scholar
  52. Wegensteiner R, Weiser J, Führer E (1996) Observations on the occurrence of pathogens in the bark beetle Ips typographus L. (Col.,Scolytidae). J Appl Entomol 120:190–204. Google Scholar
  53. Wegensteiner R, Tkaczuk C, Bałazy S, Griesser S, Rouffaud MA, Stradner A, Steinwender BM, Hager H, Papierok B (2015) Occurrence of pathogens in populations of Ips typographus, Ips sexdentatus (Coleoptera, Curculionidae, Scolytinae) and Hylobius spp. (Coleoptera, Curculionidae, Curculioninae) from Austria, Poland and France. Acta Protozool 54(3):219–232. Google Scholar
  54. Weiser J (1977) Contribution of the classification of microsporidia. Acta Soc Zool Bohem 41(4):308–320Google Scholar
  55. Williams BAP, Hirt RP, Lucocq JM, Embley TM (2002) A mitochondrial remnant in the microsporidian Trachipleistophora hominis. Nature 418(6900):865–869. CrossRefGoogle Scholar
  56. Wuyts J, Van de Peer Y, De Wachter R (2001) Distribution of substitution rates and location of insertion sites in the tertiary structure of ribosomal RNA. Nucleic Acids Res 29(24):5017–5028CrossRefGoogle Scholar
  57. Xu Y, Weiss LM (2005) The microsporidian polar tube: a highly specialised invasion organelle. Int J Parasitol 35(9):941–953. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.CHLAREASVandoeuvre-lès-NancyFrance
  2. 2.Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal HealthGreifswald-Insel RiemsGermany
  3. 3.Central Institute of the Federal Armed Forces Medical ServicesKoblenzGermany
  4. 4.Molecular Parasitology, Institute for Specific Prophylaxis and Tropical MedicineMedical University of ViennaViennaAustria
  5. 5.University of Natural Resources and Life SciencesViennaAustria

Personalised recommendations