Advertisement

Parasitology Research

, Volume 118, Issue 1, pp 29–42 | Cite as

Current scenario and future strategies to fight artemisinin resistance

  • Rahul Pasupureddy
  • Atul
  • Sriram Seshadri
  • Veena Pande
  • Rajnikant Dixit
  • Kailash C. PandeyEmail author
Immunology and Host-Parasite Interactions - Review

Abstract

Despite several setbacks in the fight against malaria such as insecticide and drug resistance as well as low efficacy of available vaccines, considerable success in reducing malaria burden has been achieved in the past decade. Artemisinins (ARTs and their combination therapies, ACTs), the current frontline drugs against uncomplicated malaria, rapidly kill plasmodial parasites and are non-toxic at short exposures. Though the exact mode of action remains unclear, the endoperoxide bridge, indispensable for ART activity, is thought to react with heme released from hemoglobin hydrolysis and generate free radicals that alkylate multiple protein targets, thereby disrupting proteostasis pathways. However, rapid development of ART resistance in recent years with no potential alternatives on the horizon threaten the elimination efforts. The Greater Mekong Subregion in South-East Asia continues to churn out mutants resistant to multiple ACTs and detected in increasingly expanding geographies. Extensive research on ART-resistant strains have identified a potential candidate Kelch13, crucial for mediating ART resistance. Parasites with mutations in the propeller domains of Plasmodium falciparum Kelch13 protein were shown to have enhanced phosphatidylinositol 3-kinase levels that were concomitant with delayed parasite clearance. Current research focused on understanding the mechanism of Kelch13-mediated ART resistance could provide better insights into Plasmodium resistome. This review covers the current proposed mechanisms of ART activity, resistance strategies adopted by the parasite in response to ACTs and possible future approaches to mitigate the spread of resistance from South-East Asia.

Keywords

Plasmodium Artemisinin Artemisinin resistance Artemisinin combination therapies Kelch13 Proteostatic dysregulation Free radicals Oxidative stress 

Notes

Acknowledgements

We thank CSIR for providing fellowship assistance to Mr. Rahul Pasupureddy (09-905(0013)2013-EMRI). Special thanks to National Institute of Malaria Research (NIMR), New Delhi, for providing basic infrastructural facilities.

Funding information

This work was supported by the Council of Scientific and Industrial Research (CSIR), Govt. of India (37(1630)/14/EMRII) and Department of Science and Technology (DST), Govt. of India (SB/SO/BB/0092/2013).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Afonso A, Hunt P, Cheesman S, Alves AC, Cunha CV, do Rosario V, Cravo P (2006) Malaria parasites can develop stable resistance to artemisinin but lack mutations in candidate genes atp6 (encoding the sarcoplasmic and endoplasmic reticulum Ca2+ ATPase), tctp, mdr1, and cg10. Antimicrob Agents Chemother 50:480–489.  https://doi.org/10.1128/AAC.50.2.480-489.2006 Google Scholar
  2. Ahmed MA, Cox-Singh J (2015) Plasmodium knowlesi—an emerging pathogen. ISBT Sci Ser 10:134–140.  https://doi.org/10.1111/voxs.12115 Google Scholar
  3. Alifrangis M, Enosse S, Khalil IF et al (2003) Prediction of Plasmodium falciparum resistance to sulfadoxine/ pyrimethamine in vivo by mutations in the dihydrofolate reductase and dihydropteroate synthetase genes: a comparative study between sites of differing endemicity. Am J Trop Med Hyg 69:601–606Google Scholar
  4. Alonso P, Noor AM (2017) The global fight against malaria is at crossroads. Lancet 390:2532–2534.  https://doi.org/10.1016/S0140-6736(17)33080-5 Google Scholar
  5. Amorim MHR, Gil Da Costa RM, Lopes C, Bastos MMSM (2013) Sesquiterpene lactones: adverse health effects and toxicity mechanisms. Crit Rev Toxicol 43:559–579.  https://doi.org/10.3109/10408444.2013.813905 Google Scholar
  6. Antoine T, Fisher N, Amewu R, O'Neill PM, Ward SA, Biagini GA (2014) Rapid kill of malaria parasites by artemisinin and semi-synthetic endoperoxides involves ROS-dependent depolarization of the membrane potential. J Antimicrob Chemother 69:1005–1016.  https://doi.org/10.1093/jac/dkt486 Google Scholar
  7. Anvikar AR, Shah N, Dhariwal AC, Sonal GS, Pradhan MM, Ghosh SK, Valecha N (2016) Epidemiology of Plasmodium vivax malaria in India. Am J Trop Med Hyg 95:108–120Google Scholar
  8. Ariey F, Witkowski B, Amaratunga C, Beghain J, Langlois AC, Khim N, Kim S, Duru V, Bouchier C, Ma L, Lim P, Leang R, Duong S, Sreng S, Suon S, Chuor CM, Bout DM, Ménard S, Rogers WO, Genton B, Fandeur T, Miotto O, Ringwald P, le Bras J, Berry A, Barale JC, Fairhurst RM, Benoit-Vical F, Mercereau-Puijalon O, Ménard D (2014) A molecular marker of artemisinin-resistant Plasmodium falciparum malaria. Nature 505:50–55.  https://doi.org/10.1038/nature12876 Google Scholar
  9. Ashley EA, Dhorda M, Fairhurst RM, Amaratunga C, Lim P, Suon S, Sreng S, Anderson JM, Mao S, Sam B, Sopha C, Chuor CM, Nguon C, Sovannaroth S, Pukrittayakamee S, Jittamala P, Chotivanich K, Chutasmit K, Suchatsoonthorn C, Runcharoen R, Hien TT, Thuy-Nhien NT, Thanh NV, Phu NH, Htut Y, Han KT, Aye KH, Mokuolu OA, Olaosebikan RR, Folaranmi OO, Mayxay M, Khanthavong M, Hongvanthong B, Newton PN, Onyamboko MA, Fanello CI, Tshefu AK, Mishra N, Valecha N, Phyo AP, Nosten F, Yi P, Tripura R, Borrmann S, Bashraheil M, Peshu J, Faiz MA, Ghose A, Hossain MA, Samad R, Rahman MR, Hasan MM, Islam A, Miotto O, Amato R, MacInnis B, Stalker J, Kwiatkowski DP, Bozdech Z, Jeeyapant A, Cheah PY, Sakulthaew T, Chalk J, Intharabut B, Silamut K, Lee SJ, Vihokhern B, Kunasol C, Imwong M, Tarning J, Taylor WJ, Yeung S, Woodrow CJ, Flegg JA, Das D, Smith J, Venkatesan M, Plowe CV, Stepniewska K, Guerin PJ, Dondorp AM, Day NP, White NJ (2014) Spread of artemisinin resistance in Plasmodium falciparum malaria. N Engl J Med 371:411–423.  https://doi.org/10.1056/NEJMoa1314981 Google Scholar
  10. Ayhan DH, Tamer YT, Akbar M, Bailey SM, Wong M, Daly SM, Greenberg DE, Toprak E (2016) Sequence-specific targeting of bacterial resistance genes increases antibiotic efficacy. PLoS Biol 14:1–18.  https://doi.org/10.1371/journal.pbio.1002552 Google Scholar
  11. Baird JK (2004) Chloroquine resistance in Plasmodium vivax. Antimicrob Agents Chemother 48:4075–4083.  https://doi.org/10.1128/AAC.48.11.4075 Google Scholar
  12. Bakouh N, Bellanca S, Nyboer B, Moliner Cubel S, Karim Z, Sanchez CP, Stein WD, Planelles G, Lanzer M (2017) Iron is a substrate of the Plasmodium falciparum chloroquine resistance transporter PfCRT in Xenopus oocytes. J Biol Chem 292:16109–16121.  https://doi.org/10.1074/jbc.M117.805200 Google Scholar
  13. Bayoh MN, Mathias DK, Odiere MR, et al (2010) Anopheles gambiae: historical population decline associated with regional distribution of insecticide-treated bed nets in western Nyanza Province, Kenya. Malar J 9.  https://doi.org/10.1186/1475-2875-9-62
  14. Beez D, Sanchez CP, Stein WD, Lanzer M (2011) Genetic predisposition favors the acquisition of stable artemisinin resistance in malaria parasites. Antimicrob Agents Chemother 55:50–55.  https://doi.org/10.1128/AAC.00916-10 Google Scholar
  15. Bhisutthibhan J, Pan X, Hossler A et al (1998) Protein chemistry and structure: the Plasmodium falciparum translationally controlled tumor protein homolog and its reaction with the antimalarial drug artemisinin the Plasmodium falciparum translationally controlled tumor protein homolog and its reaction. J Biol Chem 273:16192–16198.  https://doi.org/10.1074/jbc.273.26.16192 Google Scholar
  16. Bhisutthibhan J, Philbert MA, Fujioka H, Aikawa M, Meshnick SR (1999) The Plasmodium falciparum translationally controlled tumor protein: subcellular localization and calcium binding. Eur J Cell Biol 78:665–670.  https://doi.org/10.1016/S0171-9335(99)80052-1 Google Scholar
  17. Birnbaum J, Flemming S, Reichard N, Soares AB, Mesén-Ramírez P, Jonscher E, Bergmann B, Spielmann T (2017) A genetic system to study Plasmodium falciparum protein function. Nat Methods 14:450–456.  https://doi.org/10.1038/nmeth.4223 Google Scholar
  18. Bopp S, Magistrado P, Wong W, Schaffner SF, Mukherjee A, Lim P, Dhorda M, Amaratunga C, Woodrow CJ, Ashley EA, White NJ, Dondorp AM, Fairhurst RM, Ariey F, Menard D, Wirth DF, Volkman SK (2018) Plasmepsin II-III copy number accounts for bimodal piperaquine resistance among Cambodian Plasmodium falciparum. Nat Commun 9.  https://doi.org/10.1038/s41467-018-04104-z
  19. Boudhar A, Ng W, Loh Y, et al (2016) Overcoming chloroquine resistance in malaria: design, synthesis, and structure-activity relationships of novel hybrid compounds. 60:3076–3089.  https://doi.org/10.1128/AAC.02476-15
  20. Buffet PA, Milon G, Brousse V et al (2006) Ex vivo perfusion of human spleens maintains clearing and processing functions. Blood 107:3745–3752.  https://doi.org/10.1182/blood-2005-10-4094 Google Scholar
  21. Campo B, Vandal O, Wesche DL, Burrows JN (2015) Killing the hypnozoite—drug discovery approaches to prevent relapse in Plasmodium vivax. Pathog Glob Health 109:107–122.  https://doi.org/10.1179/2047773215Y.0000000013 Google Scholar
  22. Capela R, Cabal GG, Rosenthal PJ, Gut J, Mota MM, Moreira R, Lopes F, Prudêncio M (2011) Design and evaluation of primaquine-artemisinin hybrids as a multistage antimalarial strategy. Antimicrob Agents Chemother 55:4698–4706.  https://doi.org/10.1128/AAC.05133-11 Google Scholar
  23. Carlton JM (2018) Malaria parasite evolution in a test tube. Science (80- ) 359:159–160. doi:  https://doi.org/10.1126/science.aar4189
  24. Ch’Ng JH, Mok S, Bozdech Z et al (2013) A whole cell pathway screen reveals seven novel chemosensitizers to combat chloroquine resistant malaria. Sci Rep 3:1–9.  https://doi.org/10.1038/srep01734 Google Scholar
  25. Chavchich M, Gerena L, Peters J et al (2010) Role of pfmdr1 amplification and expression in induction of resistance to artemisinin derivatives in Plasmodium falciparum. Antimicrob Agents Chemother 54:2455–2464.  https://doi.org/10.1128/AAC.00947-09 Google Scholar
  26. Chotivanich K, Udomsangpetch R, Dondorp A, Williams T, Angus B, Simpson JA, Pukrittayakamee S, Looareesuwan S, Newbold CI, White NJ (2000) The mechanisms of parasite clearance after antimalarial treatment of Plasmodium falciparum malaria. J Infect Dis 182:629–633.  https://doi.org/10.1086/315718 Google Scholar
  27. Chugh M, Sundararaman V, Kumar S et al (2013) Protein complex directs hemoglobin-to-hemozoin formation in Plasmodium falciparum. Proc Natl Acad Sci U S A 110:5392–5397.  https://doi.org/10.1073/pnas.1218412110 Google Scholar
  28. Conrad MD, Bigira V, Kapisi J, et al (2014) Polymorphisms in K13 and falcipain-2 associated with artemisinin resistance are not prevalent in Plasmodium falciparum isolated from Ugandan children. PLoS One 9:. doi:  https://doi.org/10.1371/journal.pone.0105690
  29. Coronado LM, Nadovich CT, Spadafora C (2014) Malarial hemozoin: from target to tool. Biochim Biophys Acta Gen Subj 1840:2032–2041.  https://doi.org/10.1016/j.bbagen.2014.02.009 Google Scholar
  30. Cowell AN, Istvan ES, Lukens AK et al (2018) Mapping the malaria parasite druggable genome by using in vitro evolution and chemogenomics. Science 359:191–199.  https://doi.org/10.1126/science.aan4472 Google Scholar
  31. Cubi R, Vembar SS, Biton A, Franetich JF, Bordessoulles M, Sossau D, Zanghi G, Bosson-Vanga H, Benard M, Moreno A, Dereuddre-Bosquet N, le Grand R, Scherf A, Mazier D (2017) Laser capture microdissection enables transcriptomic analysis of dividing and quiescent liver stages of Plasmodium relapsing species. Cell Microbiol 19:1–9.  https://doi.org/10.1111/cmi.12735 Google Scholar
  32. Cui L, Su XZ (2009) Discovery, mechanisms of action and combination therapy of artemisinin. Expert Rev Anti-Infect Ther 7:999–1013.  https://doi.org/10.1586/ERI.09.68 Google Scholar
  33. Cui L, Miao J, Cui L (2007) Cytotoxic effect of curcumin on malaria parasite Plasmodium falciparum: inhibition of histone acetylation and generation of reactive oxygen species. Antimicrob Agents Chemother 51:488–494.  https://doi.org/10.1128/AAC.01238-06 Google Scholar
  34. Cui L, Mharakurwa S, Ndiaye D et al (2015) Antimalarial drug resistance: literature review and activities and findings of the ICEMR network. Am J Trop Med Hyg 93:57–68.  https://doi.org/10.4269/ajtmh.15-0007 Google Scholar
  35. Davis TME, Karunajeewa HA, Ilett KF (2005) Artemisinin-based combination therapies for uncomplicated malaria. Med J Aust 182:181–185Google Scholar
  36. de Santana Filho FS, Arcanjo AR, Chehuan YM et al (2007) Chloroquine-resistant Plasmodium vivax, Brazilian Amazon. Emerg Infect Dis 13:1125–1126.  https://doi.org/10.3201/eid1307.061386 Google Scholar
  37. Dembélé L, Franetich JF, Lorthiois A, Gego A, Zeeman AM, Kocken CHM, le Grand R, Dereuddre-Bosquet N, van Gemert GJ, Sauerwein R, Vaillant JC, Hannoun L, Fuchter MJ, Diagana TT, Malmquist NA, Scherf A, Snounou G, Mazier D (2014) Persistence and activation of malaria hypnozoites in long-term primary hepatocyte cultures. Nat Med 20:307–312.  https://doi.org/10.1038/nm.3461 Google Scholar
  38. Dennis Shanks G, Edstein MD, Jacobus D (2014) Evolution from double to triple-antimalarial drug combinations. Trans R Soc Trop Med Hyg 109:182–188.  https://doi.org/10.1093/trstmh/tru199 Google Scholar
  39. Dhingra SK, Redhi D, Combrinck JM, Yeo T, Okombo J, Henrich PP, Cowell AN, Gupta P, Stegman ML, Hoke JM, Cooper RA, Winzeler E, Mok S, Egan TJ, Fidock DA (2017) A variant PfCRT isoform can contribute to Plasmodium falciparum resistance to the first-line partner drug piperaquine Satish. MBio 8:1–19.  https://doi.org/10.1128/mBio.00303-17 Google Scholar
  40. Ding XC, Beck HP, Raso G (2011) Plasmodium sensitivity to artemisinins: magic bullets hit elusive targets. Trends Parasitol 27:73–81.  https://doi.org/10.1016/j.pt.2010.11.006 Google Scholar
  41. Dogovski C, Xie SC, Burgio G, Bridgford J, Mok S, McCaw JM, Chotivanich K, Kenny S, Gnädig N, Straimer J, Bozdech Z, Fidock DA, Simpson JA, Dondorp AM, Foote S, Klonis N, Tilley L (2015) Targeting the cell stress response of Plasmodium falciparum to overcome artemisinin resistance. PLoS Biol 13:e1002132.  https://doi.org/10.1371/journal.pbio.1002132 Google Scholar
  42. Dondorp AM, Nosten F, Yi P, Das D, Phyo AP, Tarning J, Lwin KM, Ariey F, Hanpithakpong W, Lee SJ, Ringwald P, Silamut K, Imwong M, Chotivanich K, Lim P, Herdman T, An SS, Yeung S, Singhasivanon P, Day NPJ, Lindegardh N, Socheat D, White NJ (2009) Artemisinin resistance in Plasmodium falciparum malaria. N Engl J Med 361:455–467.  https://doi.org/10.1056/NEJMoa0808859 Google Scholar
  43. Eastman RT, Khine P, Huang R, Thomas CJ, Su XZ (2016) PfCRT and PfMDR1 modulate interactions of artemisinin derivatives and ion channel blockers. Sci Rep 6:1–12.  https://doi.org/10.1038/srep25379 Google Scholar
  44. Egan TJ (2006) Chloroquine and primaquine: combining old drugs as a new weapon against falciparum malaria? Trends Parasitol 22:235–237.  https://doi.org/10.1016/j.pt.2006.03.006 Google Scholar
  45. Egan TJ (2008a) Haemozoin formation. Mol Biochem Parasitol 157:127–136.  https://doi.org/10.1016/j.molbiopara.2007.11.005 Google Scholar
  46. Egan TJ (2008b) Recent advances in understanding the mechanism of hemozoin (malaria pigment) formation. J Inorg Biochem 102:1288–1299.  https://doi.org/10.1016/j.jinorgbio.2007.12.004 Google Scholar
  47. Ehlgen F, Pham JS, de Koning-Ward T, Cowman AF, Ralph SA (2012) Investigation of the Plasmodium falciparum food vacuole through inducible expression of the chloroquine resistance transporter (PfCRT). PLoS One 7.  https://doi.org/10.1371/journal.pone.0038781
  48. Eichhorn T, Winter D, Büchele B, Dirdjaja N, Frank M, Lehmann WD, Mertens R, Krauth-Siegel RL, Simmet T, Granzin J, Efferth T (2013) Molecular interaction of artemisinin with translationally controlled tumor protein (TCTP) of Plasmodium falciparum. Biochem Pharmacol 85:38–45.  https://doi.org/10.1016/j.bcp.2012.10.006 Google Scholar
  49. Elfawal MA, Towler MJ, Reich NG, Weathers PJ, Rich SM (2015) Dried whole-plant Artemisia annua slows evolution of malaria drug resistance and overcomes resistance to artemisinin. Proc Natl Acad Sci 112:821–826.  https://doi.org/10.1073/pnas.1413127112 Google Scholar
  50. Fairhurst RM (2015) Understanding artemisinin-resistant malaria: what a difference a year makes. Curr Opin Infect Dis 28:417–425.  https://doi.org/10.1097/QCO.0000000000000199 Google Scholar
  51. Ferreira JFS, Luthria DL, Sasaki T, Heyerick A (2010) Flavonoids from Artemisia annua L. As antioxidants and their potential synergism with artemisinin against malaria and cancer. Molecules 15:3135–3170.  https://doi.org/10.3390/molecules15053135 Google Scholar
  52. Ferreira PE, Holmgren G, Veiga MI, Uhlén P, Kaneko A, Gil JP (2011) PfMDR1: mechanisms of transport modulation by functional polymorphisms. PLoS One 6:3–10.  https://doi.org/10.1371/journal.pone.0023875 Google Scholar
  53. Figtree M, Lee R, Bain L, Kennedy T, Mackertich S, Urban M, Cheng Q, Hudson BJ (2010) Plasmodium knowlesi in human, Indonesian Borneo. Emerg Infect Dis 16:672–674.  https://doi.org/10.3201/eid1604.091624 Google Scholar
  54. Foley M, Tilley L (1998) Quinoline antimalarials: mechanisms of action and resistance and prospects for new agents. Pharmacol Ther 79:55–87.  https://doi.org/10.1016/S0163-7258(98)00012-6 Google Scholar
  55. Gaillard T, Madamet M, Pradines B (2015) Tetracyclines in malaria. Malar J 14:1–10.  https://doi.org/10.1186/s12936-015-0980-0 Google Scholar
  56. Ginsburg H, Deharo E (2011) A call for using natural compounds in the development of new antimalarial treatments—an introduction. Malar J 10:S1.  https://doi.org/10.1186/1475-2875-10-S1-S1 Google Scholar
  57. Gopalakrishnan AM, Kumar N (2015) Antimalarial action of artesunate involves DNA damage mediated by reactive oxygen species. Antimicrob Agents Chemother 59:317–325.  https://doi.org/10.1128/AAC.03663-14 Google Scholar
  58. Gregson A, Plowe CV (2005) Mechanisms of resistance of malaria parasites to antifolates. Pharmacol Rev 57:117–145.  https://doi.org/10.1124/pr.57.1.4.117 Google Scholar
  59. Gural N, Mancio-Silva L, Miller AB et al (2018) In vitro culture, drug sensitivity, and transcriptome of Plasmodium vivax hypnozoites. Cell Host Microbe 23:395–406.e4.  https://doi.org/10.1016/j.chom.2018.01.002 Google Scholar
  60. Hartwig CL, Rosenthal AS, D’Angelo J, Griffin CE, Posner GH, Cooper RA (2009) Accumulation of artemisinin trioxane derivatives within neutral lipids of Plasmodium falciparum malaria parasites is endoperoxide-dependent. Biochem Pharmacol 77:322–336.  https://doi.org/10.1016/j.bcp.2008.10.015 Google Scholar
  61. Hoang AN, Sandlin RD, Omar A, Egan TJ, Wright DW (2010) The neutral lipid composition present in the digestive vacuole of plasmodium falciparum concentrates heme and mediates β-hematin formation with an unusually low activation energy. Biochemistry 49:10107–10116.  https://doi.org/10.1021/bi101397u Google Scholar
  62. Hott A, Casandra D, Sparks KN, Morton LC, Castanares GG, Rutter A, Kyle DE (2015) Artemisinin-resistant Plasmodium falciparum parasites exhibit altered patterns of development in infected erythrocytes. Antimicrob Agents Chemother 59:3156–3167.  https://doi.org/10.1128/AAC.00197-15 Google Scholar
  63. Ikeda M, Kaneko M, Tachibana S-I, Balikagala B, Sakurai-Yatsushiro M, Yatsushiro S, Takahashi N, Yamauchi M, Sekihara M, Hashimoto M, Katuro OT, Olia A, Obwoya PS, Auma MA, Anywar DA, Odongo-Aginya EI, Okello-Onen J, Hirai M, Ohashi J, Palacpac NMQ, Kataoka M, Tsuboi T, Kimura E, Horii T, Mita T (2018) Artemisinin-resistant Plasmodium falciparum with high survival rates, Uganda, 2014–2016. Emerg Infect Dis 24:718–726.  https://doi.org/10.3201/eid2404.170141 Google Scholar
  64. Jani D, Nagarkatti R, Beatty W, Angel R, Slebodnick C, Andersen J, Kumar S, Rathore D (2008) HDP—a novel heme detoxification protein from the malaria parasite. PLoS Pathog 4.  https://doi.org/10.1371/journal.ppat.1000053
  65. Jiang DQ, Tempel W, Loppnau P, et al (2015) Crystal structure analysis of Kelch protein from Plasmodium falciparum. To be publ.  https://doi.org/10.2210/PDB4YY8/PDB
  66. Kaiser M, Wittlin S, Nehrbass-Stuedli A, Dong Y, Wang X, Hemphill A, Matile H, Brun R, Vennerstrom JL (2007) Peroxide bond-dependent antiplasmodial specificity of artemisinin and OZ277 (RBx11160). Antimicrob Agents Chemother 51:2991–2993.  https://doi.org/10.1128/AAC.00225-07 Google Scholar
  67. Kannan R, Sahal D, Chauhan VS (2002) Heme-artemisinin adducts are crucial mediators of the ability of artemisinin to inhibit heme polymerization. Chem Biol 9:321–332.  https://doi.org/10.1016/S1074-5521(02)00117-5 Google Scholar
  68. Kapishnikov S, Weiner A, Shimoni E, Guttmann P, Schneider G, Dahan-Pasternak N, Dzikowski R, Leiserowitz L, Elbaum M (2012) Oriented nucleation of hemozoin at the digestive vacuole membrane in Plasmodium falciparum. Proc Natl Acad Sci 109:11188–11193.  https://doi.org/10.1073/pnas.1118120109 Google Scholar
  69. Kessl JJ, Lange BB, Merbitz-Zahradnik T, Zwicker K, Hill P, Meunier B, Pálsdóttir H, Hunte C, Meshnick S, Trumpower BL (2003) Molecular basis for atovaquone binding to the cytochrome bc1complex. J Biol Chem 278:31312–31318.  https://doi.org/10.1074/jbc.M304042200 Google Scholar
  70. Kim S, Lieberman TD, Kishony R (2014) Alternating antibiotic treatments constrain evolutionary paths to multidrug resistance. Proc Natl Acad Sci 111:14494–14499.  https://doi.org/10.1073/pnas.1409800111 Google Scholar
  71. Klonis N, Crespo-Ortiz MP, Bottova I, Abu-Bakar N, Kenny S, Rosenthal PJ, Tilley L (2011) Artemisinin activity against Plasmodium falciparum requires hemoglobin uptake and digestion. Proc Natl Acad Sci 108:11405–11410.  https://doi.org/10.1073/pnas.1104063108 Google Scholar
  72. Klonis N, Creek DJ, Tilley L (2013a) Iron and heme metabolism in Plasmodium falciparum and the mechanism of action of artemisinins. Curr Opin Microbiol 16:722–727.  https://doi.org/10.1016/j.mib.2013.07.005 Google Scholar
  73. Klonis N, Xie SC, McCaw JM et al (2013b) Altered temporal response of malaria parasites determines differential sensitivity to artemisinin. Proc Natl Acad Sci 110:5157–5162.  https://doi.org/10.1073/pnas.1217452110 Google Scholar
  74. Korsinczky M, Fischer K, Chen N, Baker J, Rieckmann K, Cheng Q (2004) Sulfadoxine resistance in Plasmodium vivax is associated with a specific amino acid in dihydropteroate synthase at the putative sulfadoxine-binding site sulfadoxine resistance in Plasmodium vivax is associated with a specific amino acid in dihydropteroate. Antimicrob Agents Chemother 48:2214–2222.  https://doi.org/10.1128/AAC.48.6.2214 Google Scholar
  75. Li X, Zhang D, Hannink M, Beamer LJ (2004) Crystallization and initial crystallographic analysis of the Kelch domain from human Keap1. Acta Crystallogr Sect D Biol Crystallogr 60:2346–2348.  https://doi.org/10.1107/S0907444904024825 Google Scholar
  76. Lopus M, Oroudjev E, Wilson L, Wilhelm S, Widdison W, Chari R, Jordan MA (2010) Maytansine and cellular metabolites of antibody-maytansinoid conjugates strongly suppress microtubule dynamics by binding to microtubules. Mol Cancer Ther 9:2689–2699.  https://doi.org/10.1158/1535-7163.MCT-10-0644 Google Scholar
  77. Maguire JD, Sumawinata IW, Masbar S et al (2002) Chloroquine-resistant Plasmodium malariae in South Sumatra, Indonesia. Lancet (London, England) 360:58–60.  https://doi.org/10.1016/S0140-6736(02)09336-4 Google Scholar
  78. March S, Ng S, Velmurugan S, Galstian A, Shan J, Logan DJ, Carpenter AE, Thomas D, Sim BKL, Mota MM, Hoffman SL, Bhatia SN (2013) A microscale human liver platform that supports the hepatic stages of plasmodium falciparum and vivax. Cell Host Microbe 14:104–115.  https://doi.org/10.1016/j.chom.2013.06.005 Google Scholar
  79. Mbengue A, Bhattacharjee S, Pandharkar T, Liu H, Estiu G, Stahelin RV, Rizk SS, Njimoh DL, Ryan Y, Chotivanich K, Nguon C, Ghorbal M, Lopez-Rubio JJ, Pfrender M, Emrich S, Mohandas N, Dondorp AM, Wiest O, Haldar K (2015) A molecular mechanism of artemisinin resistance in Plasmodium falciparum malaria. Nature 520:683–687.  https://doi.org/10.1038/nature14412 Google Scholar
  80. McCarthy JS, Baker M, O’Rourke P et al (2016) Efficacy of OZ439 (artefenomel) against early Plasmodium falciparum blood-stage malaria infection in healthy volunteers. J Antimicrob Chemother 71:2620–2627.  https://doi.org/10.1093/jac/dkw174 Google Scholar
  81. Meister S, Plouffe DM, Kuhen KL et al (2011) Imaging of plasmodium liver stages to drive next-generation antimalarial drug discovery. Science 334:1372–1377.  https://doi.org/10.1126/science.1211936 Google Scholar
  82. Ménard D, Khim N, Beghain J, Adegnika AA, Shafiul-Alam M, Amodu O, Rahim-Awab G, Barnadas C, Berry A, Boum Y, Bustos MD, Cao J, Chen JH, Collet L, Cui L, Thakur GD, Dieye A, Djallé D, Dorkenoo MA, Eboumbou-Moukoko CE, Espino FECJ, Fandeur T, Ferreira-da-Cruz MF, Fola AA, Fuehrer HP, Hassan AM, Herrera S, Hongvanthong B, Houzé S, Ibrahim ML, Jahirul-Karim M, Jiang L, Kano S, Ali-Khan W, Khanthavong M, Kremsner PG, Lacerda M, Leang R, Leelawong M, Li M, Lin K, Mazarati JB, Ménard S, Morlais I, Muhindo-Mavoko H, Musset L, Na-Bangchang K, Nambozi M, Niaré K, Noedl H, Ouédraogo JB, Pillai DR, Pradines B, Quang-Phuc B, Ramharter M, Randrianarivelojosia M, Sattabongkot J, Sheikh-Omar A, Silué KD, Sirima SB, Sutherland C, Syafruddin D, Tahar R, Tang LH, Touré OA, Tshibangu-wa-Tshibangu P, Vigan-Womas I, Warsame M, Wini L, Zakeri S, Kim S, Eam R, Berne L, Khean C, Chy S, Ken M, Loch K, Canier L, Duru V, Legrand E, Barale JC, Stokes B, Straimer J, Witkowski B, Fidock DA, Rogier C, Ringwald P, Ariey F, Mercereau-Puijalon O (2016) A worldwide map of Plasmodium falciparum K13-propeller polymorphisms. N Engl J Med 374:2453–2464.  https://doi.org/10.1056/NEJMoa1513137 Google Scholar
  83. Mishra N, Prajapati SK, Kaitholia K, Bharti RS, Srivastava B, Phookan S, Anvikar AR, Dev V, Sonal GS, Dhariwal AC, White NJ, Valecha N (2015) Surveillance of artemisinin resistance in Plasmodium falciparum in India using the kelch13 molecular marker. Antimicrob Agents Chemother 59:2548–2553.  https://doi.org/10.1128/AAC.04632-14 Google Scholar
  84. Mishra N, Bharti RS, Mallick P, Singh OP, Srivastava B, Rana R, Phookan S, Gupta HP, Ringwald P, Valecha N (2016) Emerging polymorphisms in falciparum Kelch 13 gene in northeastern region of India. Malar J 15:4–9.  https://doi.org/10.1186/s12936-016-1636-4 Google Scholar
  85. Mok S, Ashley EA, Ferreira PE, et al (2015) Population transcriptoics of human malaria parasites reveals the mechanism of artemisinin resistance. Science 347:431–435. doi:  https://doi.org/10.1126/science.1260403
  86. Müller IB, Hyde JE (2010) Antimalarial drugs: modes of action and mechanisms of parasite resistance. Future Microbiol 5:1857–1873.  https://doi.org/10.2217/fmb.10.136 Google Scholar
  87. Mutuku FM, King CH, Mungai P, Mbogo C, Mwangangi J, Muchiri EM, Walker ED, Kitron U (2011) Impact of insecticide-treated bed nets on malaria transmission indices on the south coast of Kenya. Malar J 10:356.  https://doi.org/10.1186/1475-2875-10-356 Google Scholar
  88. Nagasundaram N, Doss GPC, Chakraborty C et al (2016) Mechanism of artemisinin resistance for malaria PfATP6 L263 mutations and discovering potential antimalarials: an integrated computational approach. Sci Rep 6:1–12.  https://doi.org/10.1038/srep30106 Google Scholar
  89. Nguyen T, Sherratt PJ, Pickett CB (2003) Regulatory mechanisms controlling gene expression mediated by the antioxidant response element. Annu Rev Pharmacol Toxicol 43:233–260.  https://doi.org/10.1146/annurev.pharmtox.43.100901.140229 Google Scholar
  90. Noedl H, Se Y, Sriwichai S, Schaecher K, Teja-Isavadharm P, Smith B, Rutvisuttinunt W, Bethell D, Surasri S, Fukuda MM, Socheat D, Chan Thap L (2010) Artemisinin resistance in Cambodia: a clinical trial designed to address an emerging problem in Southeast Asia. Clin Infect Dis 51:e82–e89.  https://doi.org/10.1086/657120 Google Scholar
  91. Nosten F, Phillips-Howard PA, Kuile FO ter (2012) Other 4-methanolquinolines, amyl alcohols and phentathrenes: mefloquine, lumefantrine and halofantrine. In: Staines HM, Krishna S (eds) Treatment and prevention of malaria: antimalarial drug chemistry, action and use. pp 95–111Google Scholar
  92. Nzila A (2006) The past, present and future of antifolates in the treatment of Plasmodium falciparum infection. J Antimicrob Chemother 57:1043–1054.  https://doi.org/10.1093/jac/dkl104 Google Scholar
  93. Okell LC, Cairns M, Griffin JT, Ferguson NM, Tarning J, Jagoe G, Hugo P, Baker M, D’Alessandro U, Bousema T, Ubben D, Ghani AC (2014) Contrasting benefits of different artemisinin combination therapies as first-line malaria treatments using model-based cost-effectiveness analysis. Nat Commun 5:1–11.  https://doi.org/10.1038/ncomms6606 Google Scholar
  94. Ōmura S, Shiomi K (2007) Discovery, chemistry, and chemical biology of microbial products. Pure Appl Chem 79:581–591.  https://doi.org/10.1351/pac200779040581 Google Scholar
  95. Paloque L, Ramadani AP, Mercereau-Puijalon O, Augereau JM, Benoit-Vical F (2016) Plasmodium falciparum: multifaceted resistance to artemisinins. Malar J 15:1–12.  https://doi.org/10.1186/s12936-016-1206-9 Google Scholar
  96. Pandey AV, Tekwani BL, Singh RL, Chauhan VS (1999) Artemisinin, an endoperoxide antimalarial, disrupts the hemoglobin catabolism and heme detoxification systems in malarial parasite. J Biol Chem 274:19383–19388.  https://doi.org/10.1074/jbc.274.27.19383 Google Scholar
  97. Pandey KC, Wang SX, Sijwali PS, Lau AL, McKerrow JH, Rosenthal PJ (2005) The Plasmodium falciparum cysteine protease falcipain-2 captures its substrate, hemoglobin, via a unique motif. Proc Natl Acad Sci U S A 102:9138–9143.  https://doi.org/10.1073/pnas.0502368102 Google Scholar
  98. Pascual A, Fall B, Wurtz N et al (2013) Plasmodium falciparum with multidrug resistance 1 gene duplications, Senegal. Emerg Infect Dis 19:814.  https://doi.org/10.3201/eid1905.121603 Google Scholar
  99. Petersen I, Eastman R, Lanzer M (2011) Drug-resistant malaria: molecular mechanisms and implications for public health. FEBS Lett 585:1551–1562.  https://doi.org/10.1016/j.febslet.2011.04.042 Google Scholar
  100. Pfeil J, Borrmann S, Tozan Y (2014) Dihydroartemisinin-piperaquine vs. artemether-lumefantrine for first-line treatment of uncomplicated malaria in African children: a cost-effectiveness analysis. PLoS One 9:6–12.  https://doi.org/10.1371/journal.pone.0095681 Google Scholar
  101. Phyo AP, Nkhoma S, Stepniewska K, Ashley EA, Nair S, McGready R, ler Moo C, al-Saai S, Dondorp AM, Lwin KM, Singhasivanon P, Day NPJ, White NJ, Anderson TJC, Nosten F (2012) Emergence of artemisinin-resistant malaria on the western border of Thailand: a longitudinal study. Lancet 379:1960–1966.  https://doi.org/10.1016/S0140-6736(12)60484-X Google Scholar
  102. Phyo AP, Jittamala P, Nosten FH, Pukrittayakamee S, Imwong M, White NJ, Duparc S, Macintyre F, Baker M, Möhrle JJ (2016) Antimalarial activity of artefenomel (OZ439), a novel synthetic antimalarial endoperoxide, in patients with Plasmodium falciparum and Plasmodium vivax malaria: an open-label phase 2 trial. Lancet Infect Dis 16:61–69.  https://doi.org/10.1016/S1473-3099(15)00320-5 Google Scholar
  103. Plowe CV, Kublin JG, Doumbo OK (1998) P. falciparum dihydrofolate reductase and dihydropteroate synthase mutations: epidemiology and role in clinical resistance to antifolates. Drug Resist Updat 1:389–396.  https://doi.org/10.1016/S1368-7646(98)80014-9 Google Scholar
  104. Rathore S, Datta G, Kaur I, Malhotra P, Mohmmed A (2015) Disruption of cellular homeostasis induces organelle stress and triggers apoptosis like cell-death pathways in malaria parasite. Cell Death Dis 6:e1803–e1813.  https://doi.org/10.1038/cddis.2015.142 Google Scholar
  105. Rocamora F, Zhu L, Liong KY, Dondorp A, Miotto O, Mok S, Bozdech Z (2018) Oxidative stress and protein damage responses mediate artemisinin resistance in malaria parasites. PLoS Pathog 14:e1006930.  https://doi.org/10.1371/journal.ppat.1006930 Google Scholar
  106. Rose AS, Hildebrand PW (2015) NGL Viewer: a web application for molecular visualization. Nucleic Acids Res 43:W576–W579.  https://doi.org/10.1093/nar/gkv402 Google Scholar
  107. Ross LS, Dhingra SK, Mok S, Yeo T, Wicht KJ, Kümpornsin K, Takala-Harrison S, Witkowski B, Fairhurst RM, Ariey F, Menard D, Fidock DA (2018) Emerging Southeast Asian PfCRT mutations confer Plasmodium falciparum resistance to the first-line antimalarial piperaquine. Nat Commun 9:25–28.  https://doi.org/10.1038/s41467-018-05652-0 Google Scholar
  108. Rottmann M, McNamara C, Yeung BKS et al (2010) Spiroindolones, a potent compound class for the treatment of malaria. Science 329:1175–1180.  https://doi.org/10.1126/science.1193225 Google Scholar
  109. Schantz-Dunn J, Nour NM (2009) Malaria and pregnancy: a global health perspective. Rev Obstet Gynecol 2:186–192.  https://doi.org/10.3909/riog0091 Google Scholar
  110. Schumacher R-F, Spinelli E (2012) Malaria in children. Mediterr J Hematol Infect Dis 4:2012073.  https://doi.org/10.4084/mjhid.2012.073 Google Scholar
  111. Sharma D, Lather M, Mallick PK, Adak T, Dang AS, Valecha N, Singh OP (2015) Polymorphism in drug resistance genes dihydrofolate reductase and dihydropteroate synthase in Plasmodium falciparum in some states of India. Parasit Vectors 8:471.  https://doi.org/10.1186/s13071-015-1080-2 Google Scholar
  112. Shaw WR, Marcenac P, Childs LM, Buckee CO, Baldini F, Sawadogo SP, Dabiré RK, Diabaté A, Catteruccia F (2016) Wolbachia infections in natural Anopheles populations affect egg laying and negatively correlate with Plasmodium development. Nat Commun 7.  https://doi.org/10.1038/ncomms11772
  113. Sidhu ABS, Valderramos SG, Fidock DA (2005) pfmdr1 mutations contribute to quinine resistance and enhance mefloquine and artemisinin sensitivity in Plasmodium falciparum. Mol Microbiol 57:913–926.  https://doi.org/10.1111/j.1365-2958.2005.04729.x Google Scholar
  114. Sidhu ABS, Uhlemann A, Valderramos SG et al (2006) Decreasing pfmdr1 copy number in Plasmodium falciparum malaria heightens susceptibility to mefloquine, lumefantrine, halofantrine, quinine, and artemisinin. J Infect Dis 194:528–535.  https://doi.org/10.1086/507115 Google Scholar
  115. Singh B, Kaur J, Singh K (2014) Microbial degradation of an organophosphate pesticide, malathion. Crit Rev Microbiol 40:146–154Google Scholar
  116. Siriwardana A, Iyengar K, Roepe PD (2016) Endoperoxide drug cross-resistance patterns for Plasmodium falciparum exhibiting an artemisinin delayed-clearance phenotype. Antimicrob Agents Chemother 60:6952–6956.  https://doi.org/10.1128/AAC.00857-16 Google Scholar
  117. Srivastava IK, Morrlsey JM, Darrouzet E et al (1999) Resistance mutations reveal the atovaquone-binding domain of cytochrome b in malaria parasites. Mol Microbiol 33:704–711.  https://doi.org/10.1046/j.1365-2958.1999.01515.x Google Scholar
  118. Straimer J, Gnädig NF, Witkowski B et al (2015) K13-propeller mutations confer artemisinin resistance in Plasmodium falciparum clinical isolates. Science 347:428–431.  https://doi.org/10.1126/science.1260867 Google Scholar
  119. Straimer J, Gnädig NF, Stokes BH, et al (2017) Plasmodium falciparum K13 mutations differentially impact ozonide susceptibility and parasite fitness in vitro. MBio 8.  https://doi.org/10.1128/mBio.00172-17
  120. Sundararaj S, Singh D, Saxena AK, Vashisht K, Sijwali PS, Dixit R, Pandey KC (2012) The ionic and hydrophobic interactions are required for the auto activation of cysteine proteases of Plasmodium falciparum. PLoS One 7:1–9.  https://doi.org/10.1371/journal.pone.0047227 Google Scholar
  121. Sutherland CJ, Laundy M, Price N, Burke M, Fivelman QL, Pasvol G, Klein JL, Chiodini PL (2008) Mutations in the Plasmodium falciparum cytochrome b gene are associated with delayed parasite recrudescence in malaria patients treated with atovaquone-proguanil. Malar J 7:1–7.  https://doi.org/10.1186/1475-2875-7-240 Google Scholar
  122. Talundzic E, Okoth SA, Congpuong K, Plucinski MM, Morton L, Goldman IF, Kachur PS, Wongsrichanalai C, Satimai W, Barnwell JW, Udhayakumar V (2015) Selection and spread of artemisinin-resistant alleles in Thailand prior to the global artemisinin resistance containment campaign. PLoS Pathog 11:e1004789.  https://doi.org/10.1371/journal.ppat.1004789 Google Scholar
  123. Taylor AR, Flegg JA, Holmes CC, et al (2016) Artemether-lumefantrine and dihydroartemisinin-piperaquine exert inverse selective pressure on Plasmodium falciparum drug sensitivity associated haplotypes in Uganda. Open Forum Infect Dis ofw229.  https://doi.org/10.1093/ofid/ofw229
  124. Tilley L, Straimer J, Gnädig NF et al (2016) Artemisinin action and resistance in Plasmodium falciparum. Trends Parasitol 32:682–696.  https://doi.org/10.1016/j.pt.2016.05.010 Google Scholar
  125. Tonmunphean S, Parasuk V, Kokpol S (2001) Automated calculation of docking of artemisinin to heme. J Mol Model 7:26–33.  https://doi.org/10.1007/S008940100013 Google Scholar
  126. Tu Y (2011) The discovery of artemisinin (qinghaosu) and gifts from Chinese medicine. Nat Med 17:1217–1220.  https://doi.org/10.1038/nm.2471 Google Scholar
  127. Uhlemann AC, Cameron A, Eckstein-Ludwig U, Fischbarg J, Iserovich P, Zuniga FA, East M, Lee A, Brady L, Haynes RK, Krishna S (2005) A single amino acid residue can determine the sensitivity of SERCAs to artemisinins. Nat Struct Mol Biol 12:628–629.  https://doi.org/10.1038/nsmb947 Google Scholar
  128. Uneke CJ (2007) Impact of placental Plasmodium falciparum malaria on pregnancy and perinatal outcome in sub-Saharan Africa: I: introduction to placental malaria. Yale J Biol Med 80:39–50.  https://doi.org/10.1007/s00256-010-0904-6 Google Scholar
  129. Vaid A, Ranjan R, Smythe WA, Hoppe HC, Sharma P (2010) PfPI3K, a phosphatidylinositol-3 kinase from Plasmodium falciparum, is exported to the host erythrocyte and is involved in hemoglobin trafficking. Blood 115:2500–2507.  https://doi.org/10.1182/blood-2009-08-238972 Google Scholar
  130. Veiga MI, Dhingra SK, Henrich PP, et al (2016) Globally prevalent PfMDR1 mutations modulate Plasmodium falciparum susceptibility to artemisinin-based combination therapies. Nat Commun 7.  https://doi.org/10.1038/ncomms11553
  131. Wang J, Huang L, Li J, Fan Q, Long Y, Li Y, Zhou B (2010) Artemisinin directly targets malarial mitochondria through its specific mitochondrial activation. PLoS One 5:e9582.  https://doi.org/10.1371/journal.pone.0009582 Google Scholar
  132. Wang J, Zhang CJ, Chia WN, Loh CCY, Li Z, Lee YM, He Y, Yuan LX, Lim TK, Liu M, Liew CX, Lee YQ, Zhang J, Lu N, Lim CT, Hua ZC, Liu B, Shen HM, Tan KSW, Lin Q (2015a) Haem-activated promiscuous targeting of artemisinin in Plasmodium falciparum. Nat Commun 6:1–11.  https://doi.org/10.1038/ncomms10111 Google Scholar
  133. Wang Z, Shrestha S, Li X, Miao J, Yuan L, Cabrera M, Grube C, Yang Z, Cui L (2015b) Prevalence of K13-propeller polymorphisms in Plasmodium falciparum from China-Myanmar border in 2007-2012. Malar J 14:1–6.  https://doi.org/10.1186/s12936-015-0672-9 Google Scholar
  134. Werren JH, Baldo L, Clark ME (2008) Wolbachia: master manipulators of invertebrate biology. Nat Rev Microbiol 6:741–751Google Scholar
  135. White NJ (2008) Qinghaosu (artemisinin): the price of success. Science 320:330–334.  https://doi.org/10.1126/science.1155165 Google Scholar
  136. White NJ (2017) Malaria parasite clearance. Malar J 16:88.  https://doi.org/10.1186/s12936-017-1731-1 Google Scholar
  137. WHO (2012) WHO position statement: effectiveness of non-pharmaceutical forms of Artemisia annua against malaria. World Health Organization, GenevaGoogle Scholar
  138. WHO (2015) Guidelines for the treatment of malaria, 3rd edn. World Health Organization, GenevaGoogle Scholar
  139. WHO (2016) World malaria report 2016. World Health Organization, GenevaGoogle Scholar
  140. WHO (2017a) World malaria report 2017. World Health Organization, GenevaGoogle Scholar
  141. WHO (2017b) Status report on artemisinin and ACT resistance (April 2017). World Health Organization, GenevaGoogle Scholar
  142. Witkowski B, Lelièvre J, Barragán MJL et al (2010) Increased tolerance to artemisinin in plasmodium falciparum is mediated by a quiescence mechanism. Antimicrob Agents Chemother 54:1872–1877.  https://doi.org/10.1128/AAC.01636-09 Google Scholar
  143. Witkowski B, Amaratunga C, Khim N, Sreng S, Chim P, Kim S, Lim P, Mao S, Sopha C, Sam B, Anderson JM, Duong S, Chuor CM, Taylor WRJ, Suon S, Mercereau-Puijalon O, Fairhurst RM, Menard D (2013) Novel phenotypic assays for the detection of artemisinin-resistant Plasmodium falciparum malaria in Cambodia: in-vitro and ex-vivo drug-response studies. Lancet Infect Dis 13:1043–1049.  https://doi.org/10.1016/S1473-3099(13)70252-4 Google Scholar
  144. Witkowski B, Duru V, Khim N, Ross LS, Saintpierre B, Beghain J, Chy S, Kim S, Ke S, Kloeung N, Eam R, Khean C, Ken M, Loch K, Bouillon A, Domergue A, Ma L, Bouchier C, Leang R, Huy R, Nuel G, Barale JC, Legrand E, Ringwald P, Fidock DA, Mercereau-Puijalon O, Ariey F, Ménard D (2017) A surrogate marker of piperaquine-resistant Plasmodium falciparum malaria: a phenotype–genotype association study. Lancet Infect Dis 17:174–183.  https://doi.org/10.1016/S1473-3099(16)30415-7 Google Scholar
  145. Ye Z, Van Dyke K (1994) Interaction of artemisinin and tetracycline or erythromycin against Plasmodium falciparum in vitro. Parasite 1:211–218.  https://doi.org/10.1051/parasite/1994013211 Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018
corrected publication 2018

Authors and Affiliations

  • Rahul Pasupureddy
    • 1
    • 2
  • Atul
    • 1
    • 3
  • Sriram Seshadri
    • 2
  • Veena Pande
    • 3
  • Rajnikant Dixit
    • 1
  • Kailash C. Pandey
    • 1
    • 4
    Email author
  1. 1.National Institute of Malaria ResearchNew DelhiIndia
  2. 2.Institute of ScienceNirma UniversityAhmedabadIndia
  3. 3.Department of BiotechnologyKumaun UniversityNainitalIndia
  4. 4.Department of Biochemistry, Indian Council of Medical ResearchNational Institute for Research in Environmental HealthBhopalIndia

Personalised recommendations