Advertisement

Parasitology Research

, Volume 118, Issue 1, pp 97–109 | Cite as

Integrative taxonomic approach of trypanosomes in the blood of rodents and soricids in Asian countries, with the description of three new species

  • Eliakunda Mafie
  • Atsuko Saito-Ito
  • Masatoshi Kasai
  • Mochammad Hatta
  • Pilarita T. Rivera
  • Xiao-Hang Ma
  • Eng-Rin Chen
  • Hiroshi SatoEmail author
  • Nobuhiro Takada
Original Paper
  • 79 Downloads

Abstract

Trypanosoma lewisi (Kinetoplastea: Trypanosomatida: Trypanosomatidae) with a cosmopolitan distribution is the type species of the subgenus Herpetosoma, which includes ca. 50 nominal species isolated mainly from rodents. Since members of Herpetosoma in different host species have an almost identical morphology of bloodstream forms, these trypanosomes are referred to as ‘T. lewisi-like’, and the molecular genetic characterization of each species is necessary to verify their taxonomy. In the present study, we collected blood samples from 89 murid rodents of 15 species and 11 soricids of four species in Indonesia, Philippines, Vietnam, Taiwan, and mainland China for the detection of hemoprotozoan infection. T. lewisi and T. lewisi-like trypanosomes were found in the blood smears of 10 murid animals, which included Bandicota indica (two rats), Rattus argentiventer (one rat), and Rattus tiomanicus (two rats) in Indonesia; Rattus rattus (one rat) in the Philippines; and Niviventer confucianus (four rats) in mainland China. Furthermore, large- or medium-sized non-T. lewisi-like trypanosomes were detected in two soricids, Crocidura dracula in Vietnam and Anourosorex yamashinai in Taiwan, respectively. Molecular genetic characterization of the small subunit (SSU) ribosomal RNA gene (rDNA) and glycosomal glyceraldehyde-3-phosphate dehydrogenase (gGAPDH) gene indicated that the trypanosomes from all the murid hosts had identical SSU rDNA or gGAPDH gene nucleotide sequences except for those in N. confucianus in mainland China. These N. confucianus-infecting trypanosomes also showed several unique morphological features such as smaller bodies, anteriorly positioned nuclei, and larger rod-shaped kinetoplasts when compared with T. lewisi trypomastigotes. Trypanosoma (Herpetosoma) niviventerae n. sp. is erected for this new species. Similarly, based on morphological and molecular genetic characterization, Trypanosoma sapaensis n. sp. and Trypanosoma anourosoricis n. sp. are proposed for the trypanosomes in C. dracula in Vietnam and A. yamashinai in Taiwan, respectively. More effort directed toward the morphological and molecular genetic characterization of the trypanosomes of rodents and soricids is required to fully understand the real biodiversity of their hemoflagellates.

Keywords

Trypanosoma lewisi Trypanosoma niviventerae n. sp. Trypanosoma sapaensis n. sp. Trypanosoma anourosoricis n. sp. Rodent Soricid rDNA gGAPDH Asia 

Notes

Acknowledgments

We are indebted to the mammalogists of Hasanuddin University, Indonesia, and Central Luzon State University, Philippines, for their species identification of the collected murids and soricids.

Compliance with ethical standards

The ethics of animal trapping and sample collection adhered to in this study followed the guidelines outlined by each survey participant’s university, but at that time, no individual permission numbers of sample collection were provided to us from these organizations.

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Abramov AV, Bannikova AA, Rozhnov VV (2012) White-toothed shrews (Mammalia, Soricomorpha, Crocidura) of coastal islands of Vietnam. ZooKeys 2007:37–47CrossRefGoogle Scholar
  2. Anisimova M, Gascuel O (2006) Approximate likelihood-ratio test for branches: a fast, accurate, and powerful alternative. Syst Biol 55:539–552CrossRefGoogle Scholar
  3. Bardsley JE, Harmsen R (1973) The trypanosomes of anura. Adv Parasitol 11:1–73CrossRefGoogle Scholar
  4. Cooper C, Clode PL, Peacock C, Thompson RCA (2017) Host–parasite relationships and life histories of trypanosomes in Australia. Adv Parasitol 97:47–109CrossRefGoogle Scholar
  5. Davis BS (1952) Studies on the trypanosomes of some California mammals. University of California Publications in Zoology 57:145–249Google Scholar
  6. Davis BS (1969) Trypanosoma (Megatrypanum) hoarei sp. nov. (Prozoa: Trypanosomatidae) from shrews of the genus Sorex in California. Parasitology 59:469–491CrossRefGoogle Scholar
  7. Dereeper A, Guignon V, Blanc G, Audic S, Buffet S, Chevenet F, Dufayard JF, Guindon S, Lefort V, Lescot M, Claverie JM, Gascuel O (2008) Phylogeny.fr: robust phylogenetic analysis for the non-specialist. Nucleic Acids Res 36:465–469CrossRefGoogle Scholar
  8. Guan G, Niu Q, Yang J, Li Y, Gao J, Luo J, Yin H (2011) Trypanosoma (Herpetosoma) grosi: first isolation from Chinese striped field mouse (Apodemus agrarius). Parasitol Int 60:101–104CrossRefGoogle Scholar
  9. Guindon S, Gascuel O (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52:696–704CrossRefGoogle Scholar
  10. Haag J, O’hUigin C, Overath P (1998) The molecular phylogeny of trypanosomes: evidence for an early divergence of the Salivaria. Mol Biochem Parasitol 91:37–49CrossRefGoogle Scholar
  11. Hamilton PB, Stevens JR, Gaunt MW Gidley J, Gibson WC (2004) Trypanosomes are monophyletic: evidence from genes for glyceraldehyde phosphate dehydrogenase and small subunit ribosomal RNA. Int J Parasitol 34:1393–1404CrossRefGoogle Scholar
  12. Hamilton PB, Stevens JR, Holz P, Boag B, Cooke B, Gibson WC (2005) The inadvertent introduction into Australia of Trypanosoma nabiasi, the trypanosome of the European rabbit (Oryctolagus cuniculus), and its potential for biocontrol. Mol Ecol 14:3167–3175CrossRefGoogle Scholar
  13. Hamilton PB, Gibson WC, Stevens JR (2007) Patterns of co-evolution between trypanosomes and their hosts deduced from ribosomal RNA and protein-coding gene phylogenies. Mol Phylogenet Evol 43:15–25CrossRefGoogle Scholar
  14. Hoare CA (1972) The trypanosomes of mammals. Blackwell Scientific, Oxford, p 749Google Scholar
  15. Hong XK, Zhang X, Fusco OA, Lan YG, Lun ZR (2017) PCR-based identification of Trypanosoma lewisi and Trypanosoma musculi using maxicircle kinetoplast DNA. Acta Trop 171:207–212CrossRefGoogle Scholar
  16. Karbowiak G, Wita I, Rychlik L (2005) Trypanosoma (Megatrypanum) ornata sp. n., a parasite of the Eurasian water shrew Neomys fodiens (Pennant, 1771). Acta Protozool 44:363–367Google Scholar
  17. Lun ZR, Wen YZ, Uzureau P, Lecordier L, Lai DH, Lan YG, Desquesnes M, Geng GQ, Yang TB, Zhou WL, Jannin JG, Simarro PP, Truc P, Vincendeau P, Pays E (2015) Resistance to normal human serum reveals Trypanosoma lewisi as an underestimated human pathogen. Mol Biochem Parasitol 199:58–61CrossRefGoogle Scholar
  18. Ma Y, Wang F, Jin S, Li S (1987) Glires (rodents and lagomorphs) of northern Xinjiang and their zoogeographical distribution. Science Press, Beijing, p 274 (in Chinese)Google Scholar
  19. Mafie E, Rupa FH, Setsuda A, Saito-Ito A, Sato H (2016) Brief review on atypical trypanosomiasis of Trypanosoma lewisi. Jpn J Vet Parasitol 15:24–33Google Scholar
  20. Mafie E, Rupa FH, Takano A, Suzuki K, Maeda K, Sato H (2018) First record of Trypanosoma dionisii of the T. cruzi clade from the eastern bent-winged bat (Miniopterus fuliginosus). Parasitol Res 117:673–680CrossRefGoogle Scholar
  21. Maia da Silva F, Marcili A, Ortiz PA, Epiphanio S, Campaner M, Catão-Dias JL, Shaw JJ, Camargo EP, Teixeira MMG (2010) Phylogenetic, morphological and behavioural analyses support host switching of Trypanosoma (Herpetosoma) lewisi from domestic rats to primates. Inf Genet Evol 10:522–529CrossRefGoogle Scholar
  22. Noyes HA, Stevens JR, Teixeira M, Phelan J, Holz P (1999) A nested PCR for the ssrRNA gene detects Trypanosoma binneyi in the platypus and Trypanosoma sp. in wombats and kangaroos in Australia. Int J Prassitol 29:311–339 (Corrigendum: International Journal for Parasitology 30: 228 [2000])Google Scholar
  23. Noyes HA, Ambrose P, Barker F, Begon M, Bennet M, Bown KJ, Kemp SJ (2002) Host specificity of Trypanosoma (Herpetosoma) species: evidence that bank voles (Clethrionomys glareolus) carry only one T. (H.) evotomys 18S rRNA genotype but wood mice (Apodemus sylvaticus) carry at least two polyphyletic parasites. Parasitology 124:185–190Google Scholar
  24. Ortiz PA, Garcia HA, Lima L, Maia da Silva FM, Campaner M, Pereira CL, Jittapalapong S, Neves L, Desquesnes M, Camargo EP, Teixeira MMG (2018) Diagnosis and genetic analysis of the worldwide distributed Rattus-borne Trypanosoma (Herpetosoma) lewisi and its allied species in blood and fleas of rodents. Infect Genet Evol 63:380–390Google Scholar
  25. Paparini A, Irwin PJ, Warren K, McInnes LM, de Tores P, Ryan UM (2011) Identification of novel trypanosome genotypes in native Australian marsupials. Vet Parasitol 183:21–30CrossRefGoogle Scholar
  26. Pérez-Morga D, Vanhollebeke B, Paturiaux-Hanocq F, Derek P, Nolan DP, Lins L, Homblé F, Vanhamme L, Tebabi P, Pays A, Poelvoorde P, Jacquet A, Brasseur R, Pays E (2005) Apolipoprotein L-I promotes trypanosome lysis by forming pores in lysosomal membranes. Science 309:469–472CrossRefGoogle Scholar
  27. Pumhom P, Pognon D, Yangtara S, Thaprathorn N, Milocco C, Douangboupha B, Herder S, Chaval Y, Morad S, Jittapalapong S, Desquesnes M (2014) Molecular prevalence of Trypanosoma spp. in wild rodents of Soureast Asia: influence of human settlement habitat. Epidemiol Infect 142:1221–1230CrossRefGoogle Scholar
  28. Sato H, Ishita K, Matsuo K, Inaba T, Kamiya H, Ito M (2003) Persistent infection of Mongolian jirds with a non-pathogenic trypanosome, Trypanosoma (Herpetosoma) grosi. Parasitology 127:357–363CrossRefGoogle Scholar
  29. Sato H, Osanai A, Kamiya H, Obara Y, Jiang W, Zhen Q, Chai J, Une Y, Ito M (2005) Characterization of SSU and LSU rRNA genes of three Trypanosoma (Herpetosoma) grosi isolates maintained in Mongolian jirds. Parasitology 130:157–167CrossRefGoogle Scholar
  30. Sato H, Al-Adhami BH, Une Y, Kamiya H (2007) Trypanosoma (Herpetosoma) kuseli sp. n. (Protozoa: Kinetoplastida) in Siberian flying squirrels (Pteromys Volans). Parasitol Res 101:453–461CrossRefGoogle Scholar
  31. Sato H, Leo N, Katakai Y, Takano J, Akari H, Nakamura S, Une Y (2008) Prevalence and molecular phylogenetic characterization of Trypanosoma (Megatrypanum) minasense in the peripheral blood of small Neotropical primates after a quarantine period. J Parasitol 94:1128–1138CrossRefGoogle Scholar
  32. Simpson AGB, Stevens JR, Lukeš J (2006) The evolution and diversity of kinetoplastid flagellates. Trends Parasitol 22:168–174CrossRefGoogle Scholar
  33. Stevens J, Noyes H, Gibson W (1998) The evolution of trypanosomes infecting humans and primates. Mem Inst Oswald Cruz 93:669–676CrossRefGoogle Scholar
  34. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positions-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680CrossRefGoogle Scholar
  35. Truc P, Büscher P, Cuny G, Gonzatti MI, Jannin J, Joshi P, Juyal P, Lun Z-R, Mattioli R, Pays E, Simarro PP, Teixeira MMG, Touatier L, Vincendeau P, Desquesnes M (2013) Atypical human infections by animal trypanosomes. PLoS Negl Trop Dis 7:e2256.  https://doi.org/10.1371/journal.pntd.0002256 CrossRefGoogle Scholar
  36. Vanhamme L, Paturiaux-Hanocq F, Poelvoorde P, Nolan DP, Lins L, Van Den Abbeele J, Pays A, Tebabi P, Van Xong H, Jacquet A, Moguilevsky N, Dieu M, Kane JP, De Baetseller P, Brasseur R, Pays E (2003) Apolipoprotein L-I is the trypanosome lytic factor of human serum. Nature 422:83–87CrossRefGoogle Scholar
  37. Zhang Y, Jin S, Quan G, Li S, Ye Z, Wang F, Zhang M (1997) Distribution of mammalian species in China. China Forestry Publishing House, Beijing, p 280Google Scholar
  38. Zhang LL, Ni QX, Yao LN, Zhang XH, Chen HL, Feng Y, Zhang X, Yu KG, Ruan W (2015) [Identification of Trypanosoma species in Rattus flavipectus and R. losea using microscopy and PCR method]. Zhongguo Ji Sheng Chong Xye Yu Ji Sheng Chong Bing Za Zi (Chin J Parasitol Parasit Dis) 33:277–280Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Eliakunda Mafie
    • 1
  • Atsuko Saito-Ito
    • 2
    • 3
  • Masatoshi Kasai
    • 2
  • Mochammad Hatta
    • 4
  • Pilarita T. Rivera
    • 5
  • Xiao-Hang Ma
    • 6
  • Eng-Rin Chen
    • 7
  • Hiroshi Sato
    • 1
    • 8
    Email author
  • Nobuhiro Takada
    • 9
  1. 1.Laboratory of Parasitology, United Graduate School of Veterinary ScienceYamaguchi UniversityYamaguchiJapan
  2. 2.Section of Parasitology, Division of MicrobiologyKobe University Graduate School of MedicineKobeJapan
  3. 3.Section of Microbiology, School of PharmacyHyogo University of Health SciencesKobeJapan
  4. 4.Department of Medical Microbiology, Molecular Biology and Immunology Laboratory, Faculty of MedicineHasanuddin UniversityMakassarIndonesia
  5. 5.Department of Parasitology, College of Public HealthUniversity of the Philippines ManilaManilaPhilippines
  6. 6.College of Life SciencesZhejiang UniversityHangzhouPeople’s Republic of China
  7. 7.Department of ParasitologyKaohsiung Medical UniversityKaohsiungTaiwan
  8. 8.Faculty of Veterinary MedicineAirlangga UniversitySurabayaIndonesia
  9. 9.Faculty of Medical SciencesUniversity of FukuiFukuiJapan

Personalised recommendations