Parasitology Research

, Volume 118, Issue 1, pp 73–88 | Cite as

Phylogeny of hymenolepidid cestodes (Cestoda: Cyclophyllidea) from mammalian hosts based on partial 28S rDNA, with focus on parasites from shrews

  • Boyko Neov
  • Gergana P. Vasileva
  • Georgi Radoslavov
  • Peter Hristov
  • D. Timothy J. Littlewood
  • Boyko B. GeorgievEmail author
Original Paper


The aims of the study are to enrich the partial 28S rDNA dataset for hymenolepidids by adding new sequences for species parasitic in the genera Sorex, Neomys and Crocidura (Soricidae) and to propose a new hypothesis for the relationships among mammalian hymenolepidids. New sequences were obtained for Coronacanthus integrus, C. magnihamatus, C. omissus, C. vassilevi, Ditestolepis diaphana, Lineolepis scutigera, Spasskylepis ovaluteri, Staphylocystis tiara, S. furcata, S. uncinata, Vaucherilepis trichophorus and Neoskrjabinolepis sp. The phylogenetic analysis (based on 56 taxa) confirmed the major clades identified by Haukisalmi et al. (Zool Scr 39:631–641, 2010) based on analysis of 31 species: Ditestolepis clade, Hymenolepis clade, Rodentolepis clade and Arostrilepis clade; however, the support was weak for the early divergent lineages of the tree and for the Arostrilepis clade. Novelties revealed include the molecular evidence for the monophyly of Coronacanthus, the non-monophyletic status of Staphylocystis and the polyphyly of Staphylocystoides. The analysis has confirmed the monophyly of Hymenolepis, the monophyly of hymenolepidids from glirids, the position of Pararodentolepis and Nomadolepis as sister taxa, the polyphyly of Rodentolepis, the position of Neoskrjabinolepis and Lineolepis as sister taxa, and the close relationship among the genera with the entire reduction of rostellar apparatus. Resolved monophyletic groups are supported by the structure of the rostellar apparatus. The diversification of the Ditestolepis clade is associated with soricids. The composition of the other major clades suggests multiple evolutionary events of host switching, including between different host orders. The life cycles of Coronacanthus and Vaucherilepis are recognised as secondarily aquatic as these taxa are nested in terrestrial groups.


Phylogeny Taxonomy Hymenolepididae 28S rDNA gene 



We are grateful to the staff of the Kalimok Field Station of the Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, for facilitating partly field studies. Sampling of host individuals was permitted by the Ministry of Environment and Waters of the Republic of Bulgaria, licences NSZP-153/11.05.2012 and NSZP-350/11.09.2014.


The present study used facilities developed at the Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, in the frames of the projects WETLANET (EC FP7, Programme CAPACITIES, Grant 229802) and CEBDER (National Science Fund of the Republic of Bulgaria, Grant DOO2-15/17.02.2009). This work was partly funded by the National Science Foundation, PBI grants DEB 0818696 and DEB 0818823.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

The authors carefully reviewed the ethical standards of the journal and hereby certify that the procedures used with the investigated species comply fully with those standards. The methods used in the current study were approved by the Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences.


  1. Baer J-G, Della Santa E (1960) Matériaux pour servir à une révision des espèces du genre Hymenolepis Weinland (Cestoda), parasites de Musaraignes. I. Hymenolepis prolifer (Villot, 1880) Stammer, 1955. Bulletin de la Société Neuchâteloise des Sciences Naturelles 83:71–77Google Scholar
  2. Binkienė R, Kontrimavichus V, Hoberg EP (2011) Overview of the cestode fauna of European shrews of the genus Sorex with comments on the fauna in Neomys and Crocidura and an exploration of historical processes in post-glacial Europe. Helminthologia 48:207–228. CrossRefGoogle Scholar
  3. Binkienė R, Kornienko SA, Tkach VV (2015) Soricinia genovi n. sp. from Neomys fodiens in Bulgaria, with redescription of Soricinia globosa (Baer, 1931) (Cyclophyllidea: Hymenolepididae). Parasitol Res 114:209–218. CrossRefGoogle Scholar
  4. Binkienė R, Miliūtė A, Stunžėnas V (2018) Molecular data confirm the taxonomic position of Hymenolepis erinacei (Cyclophyllidea: Hymenolepididae) and host switching, with notes on cestodes of Palaearctic hedgehogs (Erinaceidae). J Helminthol.
  5. Cunningham LJ, Olson PD (2010) Description of Hymenolepis microstoma (Nottingham strain): a classical tapeworm model for research in the genomic era. Parasit Vectors 3:123. CrossRefGoogle Scholar
  6. Czaplinski B, Vaucher C (1994) Family Hymenolepididae Ariola, 1899. In: Khalil LF, Jones A, Bray RA (eds) Keys to the Cestode parasites of vertebrates. CAB International, Wallingford, pp 595–663Google Scholar
  7. De Ley P, Felix MA, Frisse LM, Nadler SA, Sternberg PW, Thomas WK (1999) Molecular and morphological characterisation of two reproductively isolated species with mirror-image anatomy (Nematoda: Cephalobidae). Nematology 1:591–612CrossRefGoogle Scholar
  8. Genov T (1980) Morphology and taxonomy of the species of genus Coronacanthus Spassky, 1954 (Cestoda: Hymenolepididae) in Bulgaria. Helminthologia 17:245–255Google Scholar
  9. Genov T (1984) Helminths of insectivorous mammals and rodents in Bulgaria. Izdatelstvo na Balgarskata Akademiya na Naukite, Sofia (in Bulgarian)Google Scholar
  10. Georgiev B, Biserkov V, Genov T (1986) In toto staining method for cestodes with iron acetocarmine. Helminthologia 23:279–281Google Scholar
  11. Georgiev BB, Bray RA, Littlewood DTJ (2006) Small mammals as definitive hosts of cestodes. In: Morand S, Krasnov BR, Poulin R (eds) Micromammals and macroparasites. From evolutionary ecology to management. Springer, Tokyo, pp 23–62Google Scholar
  12. Greiman SE, Tkach VV (2012) Description and phylogenetic relationships of Rodentolepis gnoskei n. sp. (Cyclophyllidea: Hymenolepididae) from a shrew Suncus varilla minor in Malawi. Parasitol Int 61:343–350. CrossRefGoogle Scholar
  13. Greiman SE, Tkach VV, Cook JA (2013) Description and molecular differentiation of a new Staphylocystoides (Cyclophyllidea: Hymenolepididae) from the Dusky Shrew Sorex monticolus in Southeast Alaska. J Parasitol 99:1045–1049. CrossRefGoogle Scholar
  14. Gulyaev VD (1991) Morphology and taxonomy of Ditestolepidini – cestodes (Cyclophyllidea) of shrews with the serial-metameric structure of the strobila. Zoologicheskiy Zhurnal 70:44–53 (In Russian)Google Scholar
  15. Gulyaev VD, Karpenko SV (1998) Cestodes of the genus Mathevolepis (Cestoda: Cyclophyllidea, Hymenolepididae) from the common shrews of the Holarctic region. Parazitologiya 32:507–518 (In Russian)Google Scholar
  16. Gulyaev VD, Kornienko SA (1999) On the morphology of Cryptocotylepis globosoides (Cestoda: Hymenolepididae) – a cestode from water shrews from Palaearctic region. Parazitologiya 33:49–54 (In Russian)Google Scholar
  17. Gulyaev VD, Mel’nikova YA (2005) A new cestode from moles, Talpolepis gen. n., and redescription of T. peipingensis (Hsü, 1935) comb. n. (Cyclophyllidea: Hymenolepididae). In: Problemy tsestodologii 3. Zoologicheskiy Institut RAN, Saint Petersburg, pp 130–139 (In Russian)Google Scholar
  18. Gulyaev VD, Lykova KA, Mel’nikova YA, Bibik EV (2004) On independence of the species Spasskylepis ovaluteri (Cestoda, Cyclophyllidea, Hymenolepididae), a parasite of Sorex shrews in Palaearctic Region. Zoologicheskiy Zhurnal 83:387–394 (In Russian)Google Scholar
  19. Gulyaev VD, Dokuchaev NE, Kornienko SA (2007) Cestodes of the genus Staphylocystoides Yamaguti, 1959 (Cestoda, Hymenolepididae) from Beringian soricine shrews. Vestnik Severo-Vostochnogo Nauchnogo Tsentra Dal’nevostochnogo Otdeleniya RAN 4:75–84 (In Russian)Google Scholar
  20. Haukisalmi V, Hardman LM, Foronda P, Feliu C, Laakkonen J, Niemimaa J, Lehtonen JT, Henttonen H (2010) Systematic relationships of hymenolepidid cestodes of rodents and shrews inferred from sequences of 28S ribosomal RNA. Zool Scr 39:631–641. CrossRefGoogle Scholar
  21. He K, Li YJ, Brandley MC, Lin LK, Wang YX, Zhang YP, Jiang XL (2010) A multi-locus phylogeny of Nectogalini shrews and influences of the paleoclimate on speciation and evolution. Mol Phylogenet Evol 56:734–746. CrossRefGoogle Scholar
  22. Hewitt GM (1999) Post-glacial re-colonization of European biota. Biol J Linn Soc 68:87–112CrossRefGoogle Scholar
  23. Hoberg EP, Jones A, Bray RA (1999) Phylogenetic analysis among the families of the Cyclophyllidea (Eucestoda) based on comparative morphology, with new hypotheses for co-evolution in vertebrates. Syst Parasitol 42:51–73CrossRefGoogle Scholar
  24. Ishigenova LA, Berezina OG, Makarikov AA (2018) Postembryonic development of Arostrilepis microtis Gulyaev et Chechulin, 1997 (Eucestoda: Hymenolepididae) in springtails (Collembola: Entomobryidae). Parasitol Res 117:2411–2417. CrossRefGoogle Scholar
  25. Karpenko SV, Gulyaev VD (1990) Redescription of the shrew cestode Pseudobothrialepis mathevossianae Schaldybin, 1957 (Hymenolepididae). Izvestiya Sibirskogo Otdeleniya Akademii Nauk SSSR, Seriya Biologicheskikh Nauk 9:68–71 (In Russian)Google Scholar
  26. Kisielewska K (1960) Life cycle of the tapeworm Pseudodiorchis prolifer (Villot, 1890) comb. nova (= Pseudodiorchis multispinosa Żarnowski, 1955). Acta Parasitol Pol 8:197–204Google Scholar
  27. Korneva ZV, Kornienko SA (2013) Morphology and ultrastructure of the uterus of Lineolepis scutigera (Dujardin, 1845) Karpenko, 1985 (Cestoda, Cyclophyllidea, Hymenolepididae) in formation of uterine capsules. Inland Water. Biology 6:259–267Google Scholar
  28. Korneva ZV, Kornienko SA (2014) Interaction of the uterus and developing eggs in cyclophyllidean cestodes with different fecundity. Biol Bull 41:139–148CrossRefGoogle Scholar
  29. Kornienko SA, Binkiene R (2014) Redescription and systematic position of Soricinia tripartita Zarnowski, 1955 (Cestoda: Cyclophyllidea), a cestode species parasitic in shrews of the genus Sorex, including erection of Gulyaevilepis gen. n. Folia Parasitol 61:141–147.
  30. Kornienko SA, Gulyaev VD, Mel’nikova YA (2006) On morphology and systematics of cestodes of the genus Neoskrjabinolepis (Cyclophyllidea, Hymenolepididae). Zoologicheskiy Zhurnal 85:134–145 (In Russian)Google Scholar
  31. Kornienko SA, Gulyaev VD, Mel’nikova YA, Georgiev BB (2008) Neoskrjabinolepis nuda n. sp. from shrews on Sakhalin Island, Russia, with a taxonomic review of Neoskrjabinolepis Spasskii, 1947 (Cestoda: Cyclophyllidea: Hymenolepididae). Syst Parasitol 70:147–158. CrossRefGoogle Scholar
  32. Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874. CrossRefGoogle Scholar
  33. Lockyer AE, Olson PD, Littlewood DTJ (2003) Utility of complete large and small subunit rRNA genes in resolving the phylogeny of the Neodermata (Platyhelminthes): implications and a review of the cercomer theory. Biol J Linn Soc 78:155–171. CrossRefGoogle Scholar
  34. Makarikov AA (2017) A taxonomic review of hymenolepidids (Eucestoda, Hymenolepididae) from dormice (Rodentia, Gliridae), with descriptions of two new species. Acta Parasitol 62:1–21. CrossRefGoogle Scholar
  35. Makarikov AA, Gulyaev VD (2009) Pararodentolepis gen. n., a new genus of cestodes from rodents, with the description of P. sinistra sp. n. (Cyclophyllidea: Hymenolepididae). Parazitologiya 43:454–459 (In Russian)Google Scholar
  36. Makarikov AA, Gulyaev VD, Krivopalov AV (2010) Nomadolepis (Cyclophyllidea, Hymenolepididae), a new genus of cestodes from rodents. Zoologicheskiy Zhurnal 89:948–955 (In Russian)Google Scholar
  37. Makarikov AA, Gulyaev VD, Kontrimavichus VL (2011) A redescription of Arostrilepis horrida (Linstow, 1901) and descriptions of two new species from Palaearctic microtine rodents, Arostrilepis macrocirrosa sp. n. and A. tenuicirrosa sp. n. (Cestoda: Hymenolepididae). Folia Parasitol 58:108–120CrossRefGoogle Scholar
  38. Makarikov AA, Mel’nikova YA, Tkach VV (2015) Description and phylogenetic affinities of two new species of Nomadolepis (Eucestoda, Hymenolepididae) from Eastern Palearctic. Parasitol Int 64:453–463. CrossRefGoogle Scholar
  39. Makarikov AA, Stakheev VV, Tkach VV (2018) Phylogenetic relationships of the genus Armadolepis Spassky, 1954 (Eucestoda, Hymenolepididae), with descriptions of two new species from Palaearctic dormice (Rodentia, Gliridae). Syst Parasitol 95:65–79. CrossRefGoogle Scholar
  40. Mariaux J (1998) A molecular phylogeny of the Eucestoda. J Parasitol 84:114–124CrossRefGoogle Scholar
  41. Mariaux J, Olson PD (2001) Cestode systematics in the molecular era. In: Littlewood DTJ, Bray RA (eds) Interrelationships of the Platyhelminthes. Taylor & Francis, London, pp 127–134Google Scholar
  42. Mariaux J, Tkach VV, Vasileva GP, Waeschenbach A, Beveridge I, Dimitrova YD, Haukisalmi V, Greiman SE, Littlewood DTJ, Makarikov AA, Phillips AJ, Razafiarisolo T, Widmer V, Georgiev BB (2017) Cyclophyllidea van Beneden in Braun, 1900. In: Caira JN, Jensen K (eds) Planetary Biodiversity Inventory (2008–2017): Tapeworms from Vertebrate Bowels of the Earth. University of Kansas, Natural History Museum, Lawrence, pp 77–148Google Scholar
  43. Nkouawa A, Haukisalmi V, Li T, Nakao M, Lavikainen A, Chen X, Henttonen H, Ito A (2016) Cryptic diversity in hymenolepidid tapeworms infecting humans. Parasitol Int 65:83–86. CrossRefGoogle Scholar
  44. Nylander JAA, Ronquist F, Huelsenbeck JP, Nieves-Aldrey J, Buckley T (2004) Bayesian phylogenetic analysis of combined data. Syst Biol 53:47–67. CrossRefGoogle Scholar
  45. Olson PD, Tkach VV (2005) Advances and trends in the molecular systematics of the parasitic Platyhelminthes. Adv Parasitol 60:165–243. CrossRefGoogle Scholar
  46. Olson PD, Littlewood DTJ, Bray RA, Mariaux J (2001) Interrelationships and evolution of the tapeworms (Platyhelminthes: Cestoda). Mol Phylogenet Evol 19:443–467. CrossRefGoogle Scholar
  47. Pleijel F, Jondelius U, Norlinder E, Nygren A, Oxelman B, Schander C, Sundberg P, Thollesson M (2008) Phylogenies without roots? A plea for the use of vouchers in molecular phylogenetic studies. Mol Phylogenet Evol 48:369–371. CrossRefGoogle Scholar
  48. Prokopic J (1968) Parasite specificity as the result of ecological parasite-host relations. Helminthologia 9:491–196 (In Russian)Google Scholar
  49. Prokopic J (1971) The life cycle of the cestode Rodentolepis erinacei (Gmelin, 1789). Folia Parasitol 18:27–32Google Scholar
  50. Prokopic J, Mauer Z (1969) Nëkteré poznatky o biologii tasemnic z drobnych savcù. Zpravy Československé Spolecnosti Parasitologické 9:22–30Google Scholar
  51. Prokopic J, Dimitrova E, Genov T, Karapchanski I (1970) Cysticercoids of cestodes of insectivores in Bulgaria. Izvestiya na Tsentralnata Khelmintologichna Laboratoriya 14:173–184Google Scholar
  52. Quentin JC, Jourdane J, Rioux JA, Leger N, Houin R, Croset H (1971) Présence du cysticercoïde d'Hymenolepis brusatae Vaucher, 1971 chez Phlebotomus perniciosus Newstead, 1911 et Phlebotomus mascittii Grassi, 1908. Ann Parasitol Hum Comp 46:589–593CrossRefGoogle Scholar
  53. Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Höhna S, Larget B, Liu L, Suchar MA, Huelsenbeck JP (2012) MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol 61:539–542. CrossRefGoogle Scholar
  54. Rzebik-Kowalska B (2003) Distribution of shrews (Insectivora, Mammalia) in time and space. Deinsea 10:499–508Google Scholar
  55. Sawada I, Harada M, Oda S (1995) Further studies on cestode parasites of some micromammalians (Insectivora) from Akademgorodok City and Altai Region, Russia. Proceedings of the Japanese Society of Systematic Zoology 54:19–27Google Scholar
  56. Spasskiy AA (1954) Classification of mammalian hymenolepidids. Trudy Gel’mintologicheskoy Laboratorii Akademii Nauk SSSR 7:120–167 (In Russian)Google Scholar
  57. Specian RD, Lumsden RD (1980) The microanatomy and fine structure of the rostellum of Hymenolepis diminuta. Zeitschrift für Parasitenkunde 63:71–88CrossRefGoogle Scholar
  58. Stoitsova SR, Georgiev BB, Dacheva RB, Vinarova MI (1997) Scolex glands associated with the rostella in three species of the Dilepididae (Cestoda: Cyclophyllidea). Acta Zoologica (Stockholm) 78:187–193CrossRefGoogle Scholar
  59. Sulgostowska T, Solarz K, Madej G, Klimaszewski K (2015) Mites and internal parasites associated with the common dung beetle Geotrupes (Anoplotrupes) stercorosus (Hartmann in Scriba, 1791) in Poland. Acta Parasitol 60:622–630CrossRefGoogle Scholar
  60. Swan DC (1936) Berlese’s fluid: remarks upon its preparation and use as a mounting medium. Bull Entomol Res 27:389–391. CrossRefGoogle Scholar
  61. Tkach VV (1994) Description of cysticercoid of Coronacanthus vassilevi Genov, 1980 (Cestoda: Hymenolepididae). Parasite 1:161–165. CrossRefGoogle Scholar
  62. Tkach VV, Vasileva GP, Genov T (2003) Description of Vaucherilepis trichophorus sp. nov., gen. nov. (Cyclophyllidea, Hymenolepididae) from water shrews and gammarid crustaceans in Bulgaria and Ukraine. Acta Parasitol 48:87–97Google Scholar
  63. Tkach VV, Makarikov AA, Kinsella JM (2013) Morphological and molecular differentiation of Staphylocystis clydesengeri n. sp. (Cestoda, Hymenolepididae) from the vagrant shrew, Sorex vagrans (Soricomorpha, Soricidae), in North America. Zootaxa 3691:389–400. CrossRefGoogle Scholar
  64. Tkach VV, Kinsella JM, Greiman SE (2018) Two new species of Staphylocystoides Yamaguti, 1959 (Cyclophyllidea: Hymenolepididae) from the masked shrew Sorex cinereus in North America. J Parasitol 104:157–167. CrossRefGoogle Scholar
  65. Vasileva GP, Tkach VV, Genov T (2005) Two new hymenolepidid species (Cestoda, Hymenolepididae) from water shrews Neomys fodiens pennant (Insectivora, Soricidae) in Bulgaria. Acta Parasitol 50:56–64Google Scholar
  66. Vaucher C (1971) Les Cestodes parasites des Soricidae d'Europe. Etude anatomique, révision taxonomique et biologie. Rev Suisse Zool 78:1–113. CrossRefGoogle Scholar
  67. Vaucher C (1992) Revision of the genus Vampirolepis Spasskij, 1954 (Cestoda: Hymenolepididae). Mem Inst Oswaldo Cruz 87:299–304. CrossRefGoogle Scholar
  68. Vaucher C, Quentin JC (1975) Présence du cysticercoïde de Hymenolepis myoxi (Rud., 1819) chez la Puce du Lérot et redescription du Ver adulte. Bulletin de la Société Neuchâteloise des Sciences Naturelles 98:27–34Google Scholar
  69. Waeschenbach A, Webster BL, Bray RA, Littlewood DTJ (2007) Added resolution among ordinal level relationships of tapeworms (Platyhelminthes: Cestoda) with complete small and large subunit nuclear ribosomal RNA genes. Mol Phylogenet Evol 45:311–325. CrossRefGoogle Scholar
  70. Waeschenbach A, Webster BL, Littlewood DTJ (2012) Adding resolution to ordinal level relationships of tapeworms (Platyhelminthes: Cestoda) with large fragments of mtDNA. Mol Phylogenet Evol 63:834–847. CrossRefGoogle Scholar
  71. Williams BD, Schrank B, Huynh C, Shownkeen R, Waterston RH (1992) A genetic mapping system in Caenorhabditis elegans based on polymorphic sequence-tagged sites. Genetics 131:609–624Google Scholar
  72. Wilson DE, Reeder DM (eds) (2005) Mammal species of the world. A taxonomic and geographic reference, 3rd edn. Johns Hopkins University Press, Baltimore Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Boyko Neov
    • 1
  • Gergana P. Vasileva
    • 1
  • Georgi Radoslavov
    • 1
  • Peter Hristov
    • 1
  • D. Timothy J. Littlewood
    • 2
  • Boyko B. Georgiev
    • 1
    Email author
  1. 1.Institute of Biodiversity and Ecosystem ResearchBulgarian Academy of SciencesSofiaBulgaria
  2. 2.Department of Life SciencesThe Natural History MuseumLondonUK

Personalised recommendations