Parasitology Research

, Volume 118, Issue 1, pp 47–55 | Cite as

An Eimeria acervulina OTU protease exhibits linkage-specific deubiquitinase activity

  • Pu Wang
  • Pengtao Gong
  • Weirong Wang
  • Jianhua Li
  • Yongxing AiEmail author
  • Xichen ZhangEmail author
Original Paper


Ubiquitination is an important post-translational modification process that regulates many cellular processes. Proteins can be modified at single or multiple lysine residues by a single ubiquitin protein or by ubiquitin oligomers. It is important to note that the type of ubiquitin chains determines the functional outcome of the modification. Ubiquitin or ubiquitin chains can be removed by deubiquitinases (DUBs). In our previous study, the Eimeria tenella ovarian tumour (Et-OTU) DUB was shown to regulate the telomerase activity of E. tenella and affect E. tenella proliferation. The amino acid sequences of Et-OTU (GenBank: XP_013229759.1) and Eimeria acervulina (E. acervulina) ovarian tumour (Ea-OTUD3) DUB (XP_013250378.1) are 74% identical. Although Et-OTU may regulate E. tenella telomerase activity, whether Ea-OTUD3 affects E. acervulina growth and reproduction remains unclear. We show here that Ea-OTUD3 belongs to the OTU domain class of cysteine protease deubiquitinating enzymes. Ea-OTUD3 is highly linkage-specific, cleaving K48 (Lys48)-, K63-, and K6-linked diubiquitin but not K29-, K33-, and K11-linked diubiquitin. The precise linkage preference of Ea-OTUD3 among these three nonlinear diubiquitin chains is K6 > K48 > K63. Recombinant Ea-OTUD3, but not its catalytic-site mutant Ea-OTUD3 (C247A), exhibits activity against diubiquitin. Ea-OTUD3 removes ubiquitin from the K48-, but to a lesser extent from the K63-linked ubiquitinated E. acervulina proteins of the modified target protein, thereby exhibiting the characteristics of deubiquitinase. This study reveals that the Ea-OTUD3 is a novel functional deubiquitinating enzyme. Furthermore, the Ea-OTUD3 protein may regulate the stability of some K48-linked ubiquitinated E. acervulina proteins.


Eimeria acervulina Deubiquitinase OTU Ubiquitin 



This work was supported by grant from Jilin province science and technology development plan item (no. 20170204036NY) and from the National Natural Science Foundation (NSFC) of China (nos. 31272550, 31672288, and 30970322).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflicts of interest.

Supplementary material

436_2018_6113_Fig6_ESM.png (103 kb)

(PNG 103 kb)

436_2018_6113_MOESM1_ESM.tif (375 kb)
High Resolution (TIF 374 kb)
436_2018_6113_Fig7_ESM.png (58 kb)

(PNG 58 kb)

436_2018_6113_MOESM2_ESM.tif (62 kb)
High Resolution (TIF 61 kb)
436_2018_6113_Fig8_ESM.png (180 kb)

(PNG 180 kb)

436_2018_6113_MOESM3_ESM.tif (582 kb)
High Resolution (TIF 582 kb)


  1. Ali MAM, Strickfaden H, Lee BL, Spyracopoulos L, Hendzel MJ (2018) RYBP is a K63-ubiquitin-chain-binding protein that inhibits homologous recombination repair. Cell Rep 22(2):383–395CrossRefGoogle Scholar
  2. Datta G, Hossain ME, Asad M, Rathore S, Mohmmed A. (2017). Plasmodium falciparum OTU-like cysteine protease (PfOTU) is essential for apicoplast homeostasis and associates with non-canonical role of Atg8. Cell Microbiol 19(9)Google Scholar
  3. Dhara A, Sinai AP (2016) A cell cycle-regulated toxoplasma deubiquitinase, TgOTUD3A, targets polyubiquitins with specific lysine linkages. mSphere 1(3):e00085–16Google Scholar
  4. Dhara A, de Paula Baptista R, Kissinger JC, Snow EC, Sinai AP. (2017). Ablation of an ovarian tumor family deubiquitinase exposes the underlying regulation governing the plasticity of cell cycle progression in Toxoplasma gondii. MBio 8(6): e01846–17Google Scholar
  5. Du A, Wang S (2005) Efficacy of a DNA vaccine delivered in attenuated Salmonella typhimurium against Eimeria tenella infection in chickens. Int J Parasitol 35(7):777–785CrossRefGoogle Scholar
  6. Durcan TM, Tang MY, Perusse JR, Dashti EA, Aguileta MA, McLelland GL et al (2014) USP8 regulates mitophagy by removing K6-linked ubiquitin conjugates from parkin. EMBO J 33(21):2473–2491CrossRefGoogle Scholar
  7. Farshi P, Deshmukh RR, Nwankwo JO, Arkwright RT, Cvek B, Liu J, Dou QP (2015) Deubiquitinases (DUBs) and DUB inhibitors: a patent review. Expert Opin Ther Pat 25(10):1191–1208CrossRefGoogle Scholar
  8. Groves MR, Schroer CFE, Middleton AJ, Lunev S, Danda N, Ali AM, Marrink SJ, Williams C (2017) Structural insights into K48-linked ubiquitin chain formation by the Pex4p-Pex22p complex. Biochem Biophys Res Commun 496(2):562–567Google Scholar
  9. Habelhah H (2010) Emerging complexity of protein ubiquitination in the NF-kappaB pathway. Genes Cancer 1(7):735–747CrossRefGoogle Scholar
  10. Heideker J, Wertz IE (2015) DUBs, the regulation of cell identity and disease. Biochem J 467(1):191CrossRefGoogle Scholar
  11. Heidelberger JB, Voigt A, Borisova ME, Petrosino G, Ruf S, Wagner SA et al (2018) Proteomic profiling of VCP substrates links VCP to K6-linked ubiquitylation and c-Myc function. EMBO Rep 19(4):e44754CrossRefGoogle Scholar
  12. Komander D (2009) The emerging complexity of protein ubiquitination. Biochem Soc Trans 37(Pt 5):937–953CrossRefGoogle Scholar
  13. Kristariyanto YA, Abdul Rehman SA, Campbell DG, Morrice NA, Johnson C, Toth R, Kulathu Y (2015) K29-selective ubiquitin binding domain reveals structural basis of specificity and heterotypic nature of k29 polyubiquitin. Mol Cell 58(1):83–94CrossRefGoogle Scholar
  14. Lim KH, Ramakrishna S, Baek KH (2013) Molecular mechanisms and functions of cytokine-inducible deubiquitinating enzymes. Cytokine Growth Factor Rev 24(5):427–431CrossRefGoogle Scholar
  15. Mevissen TE, Hospenthal MK, Geurink PP, Elliott PR, Akutsu M, Arnaudo N et al (2013) OTU deubiquitinases reveal mechanisms of linkage specificity and enable ubiquitin chain restriction analysis. Cell 154(1):169–184CrossRefGoogle Scholar
  16. Morris JR, Solomon E (2004) BRCA1: BARD1 induces the formation of conjugated ubiquitin structures, dependent on K6 of ubiquitin, in cells during DNA replication and repair. Hum Mol Genet 13(8):807–817CrossRefGoogle Scholar
  17. Natalia D, MagnaniLaura A, DadaJacob I (2018) Ubiquitin-proteasome signaling in lung injury. Transl Res S1931-5244(18):30057–30054Google Scholar
  18. Rape M (2010) Assembly of k11-linked ubiquitin chains by the anaphase-promoting complex. Subcell Biochem 54:107–115CrossRefGoogle Scholar
  19. Richter B, Sliter DA, Herhaus L, Stolz A, Wang C, Beli P et al (2016) Phosphorylation of OPTN by TBK1 enhances its binding to Ub chains and promotes selective autophagy of damaged mitochondria. Proc Natl Acad Sci U S A 113(15):4039–4044CrossRefGoogle Scholar
  20. Ritzi MM, Abdelrahman W, Mohnl M, Dalloul RA (2014) Effects of probiotics and application methods on performance and response of broiler chickens to an Eimeria challenge. Poult Sci 93(11):2772–2778CrossRefGoogle Scholar
  21. Rubtsova MP, Vasilkova DP, Malyavko AN, Naraikina YV, Zvereva MI, Dontsova OA (2012) Telomere lengthening and other functions of telomerase. Acta Nat 4(2):44–61Google Scholar
  22. Shanmugham A, Ovaa H (2008) DUBs and disease activity assays for inhibitor development. Curr Opin Drug Discov Devel 11(5):688–696Google Scholar
  23. Staszczak M (2017) Ubiquitin-proteasome pathway as a target for therapeutic strategies. Postepy Biochem 63(4):287–303Google Scholar
  24. Wallach MG, Ashash U, Michael A, Smith NC (2008) Field application of a subunit vaccine against an enteric protozoan disease. PLoS One 3(12):e3948CrossRefGoogle Scholar
  25. Wang P, Wang W, Yang J, Ai Y, Gong P, Zhang X (2017) A novel telomerase-interacting OTU protein of Eimeria tenella and its telomerase-regulating activity. Acta Biochim Biophys Sin Shanghai 49(8):744–745CrossRefGoogle Scholar
  26. Yao T, Ndoja A (2012) Regulation of gene expression by the ubiquitin-proteasome system. Semin Cell Dev Biol 23(5):523–529CrossRefGoogle Scholar
  27. Yin G, Lin Q, Wei W, Qin M, Liu X, Suo X, Huang Z (2014) Protective immunity against Eimeria tenella infection in chickens induced by immunization with a recombinant C-terminal derivative of EtIMP1. Vet Immunol Immunopathol 162(3–4):117–121CrossRefGoogle Scholar
  28. Yu X, Robinson JF, Sidhu JS, Hong S, Faustman EM (2010) A system-based comparison of gene expression reveals alterations in oxidative stress, disruption of ubiquitin-proteasome system and altered cell cycle regulation after exposure to cadmium and methylmercury in mouse embryonic fibroblast. Toxicol Sci 114(2):356–377CrossRefGoogle Scholar
  29. Yuan WC, Lee YR, Lin SY, Chang LY, Tan YP, Hung CC, Kuo JC, Liu CH, Lin MY, Xu M et al (2014) K33-linked polyubiquitination of coronin 7 by Cul3-KLHL20 ubiquitin E3 ligase regulates protein trafficking. Mol Cell 54(4):586–600CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.College of Veterinary MedicineJilin UniversityChangchunChina
  2. 2.College of Animal ScienceJilin UniversityChangchunChina

Personalised recommendations